Как по мне, так это единственное применение понятия аффинного пространства, так что неудивительно, что в приведенной книге, которая насколько я знаю, вообще для инженеров, используется такое определение.
Ну почему. Скажем, определять производную в точке в многомерном случае выгодней всего, пользуясь определением касательного пространства в этой же точке, и аффинность его будет использоваться по существу - нужны и точки из пространства, и векторы.
И ещё тут одна темка была про аффинные vs. векторные пространства, не старше года…
Если мы об одном же, то найти в той темке именно про пространства будет очень трудно.