2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Теория Галуа
Сообщение12.01.2015, 14:04 
1)Дано поле $Q(i,\sqrt{3})$. Найти все такие $n$, что все корни $x^{n}-1$ лежат в этом поле. Я думаю что там могут лежать только такие корни из единицы $1,-1,i,-i,\frac{1}{2}+\frac{\sqrt{3}}{2},-\frac{1}{2}+\frac{\sqrt{3}}{2},-\frac{1}{2}-\frac{\sqrt{3}}{2},\frac{1}{2}-\frac{\sqrt{3}}{2}$, если это верно, то как показать что других корней нет?

 
 
 
 Re: Теория Галуа
Сообщение12.01.2015, 14:35 
Можно воспользоваться тем, что первообразный корень $n$-й степени из единицы как алгебраическое число имеет степень $\varphi(n)$ (функция Эйлера). Степень расширения $\mathbb{Q}(i,\sqrt{3})$ над $\mathbb{Q}$ также известна и равна ... чему?

 
 
 
 Re: Теория Галуа
Сообщение12.01.2015, 15:32 
$|Q(\sqrt{3},i):Q|=|Q(\sqrt{3}):Q||Q(\sqrt{3},i):Q(\sqrt{3})|=4$ Только я что то не понял как это использовать.

 
 
 
 Re: Теория Галуа
Сообщение12.01.2015, 15:40 
Почти для всех $n$ имеем $\varphi(n)>4$. Осталось найти эти исключительные значения $n$ и проверить их.

 
 
 
 Re: Теория Галуа
Сообщение13.01.2015, 01:50 
Понятно, получается $n = 12$.
Еще одна задачка: Пусть $A=<a>$, $|a|=12$, какие могут быть группы $B$ и $C$, что $A=B \times C$?
По определению прямого произведения $A$ и $B$ должны быть подгруппами $G$, тогда по теореме Лагранжа их порядок должен делить 12, т.е возможные порядки: 1 и 12, 2 и 6, 3 и 4. Наверное условие цикличности позволяет выкинуть некоторые порядки, но я не могу понять как.

 
 
 
 Re: Теория Галуа
Сообщение13.01.2015, 04:15 
Блин я обозначения напутал, должно быть По определению прямого произведения $B$ и $C$ должны быть подгруппами $A$

 
 
 
 Re: Теория Галуа
Сообщение13.01.2015, 11:01 
Slow в сообщении #960510 писал(а):
1)Дано поле $Q(i,\sqrt{3})$. Найти все такие $n$, что все корни $x^{n}-1$ лежат в этом поле. Я думаю что там могут лежать только такие корни из единицы $1,-1,i,-i,\frac{1}{2}+\frac{\sqrt{3}}{2},-\frac{1}{2}+\frac{\sqrt{3}}{2},-\frac{1}{2}-\frac{\sqrt{3}}{2},\frac{1}{2}-\frac{\sqrt{3}}{2}$, если это верно, то как показать что других корней нет?

Не многовато ли у Вас действительных корней из 1 получилось?

 
 
 
 Re: Теория Галуа
Сообщение13.01.2015, 11:38 
VAL в сообщении #961126 писал(а):
Не многовато ли у Вас действительных корней из 1 получилось?

А это я $i$ потерял конечно же, извиняюсь.
Еще такая задачка попалась:
Чему изоморфна фактор группа $S_4/K_4$, где $K_4$ это группа Клейна.
Понятно что она будет изоморфна сама себе, но наверное нужно найти другие группы. Так как тут речь идет о изоморфизме фактор группы мне кажется можно использовать теорему о гомоморфизме, но тогда не понятно какой брать гомоморфизм.

 
 
 
 Re: Теория Галуа
Сообщение13.01.2015, 12:50 
Slow в сообщении #961142 писал(а):
VAL в сообщении #961126 писал(а):
Еще такая задачка попалась:
Чему изоморфна фактор группа $S_4/K_4$, где $K_4$ это группа Клейна.
Понятно что она будет изоморфна сама себе, но наверное нужно найти другие группы. Так как тут речь идет о изоморфизме фактор группы мне кажется можно использовать теорему о гомоморфизме, но тогда не понятно какой брать гомоморфизм.

Выясните, сколько элементов в факторгруппе. Какие бывают группы (с точностью до изоморфизна) из такого числа элементов?

PS: Лучше не обсуждать разные задачи в рамках одной темы, а заводить для новой задачи новую тему.

-- 13 янв 2015, 12:57 --

Slow в сообщении #961012 писал(а):
Еще одна задачка: Пусть $A=<a>$, $|a|=12$, какие могут быть группы $B$ и $C$, что $A=B \times C$?
По определению прямого произведения $A$ и $B$ должны быть подгруппами $G$, тогда по теореме Лагранжа их порядок должен делить 12, т.е возможные порядки: 1 и 12, 2 и 6, 3 и 4. Наверное условие цикличности позволяет выкинуть некоторые порядки, но я не могу понять как.
Рассматривать одноэлементную группу прямым сомножителем не нужно (второй сомножитель будет изоморфен исходной группе).
Из оставшихся случаев в одном, как Вы и предполагали, нельзя получить в качестве прямого произведения циклическую группу порядка 12. Там просто не возникнет элементов порядка 12. Подумайте в каком.

 
 
 
 Re: Теория Галуа
Сообщение13.01.2015, 19:24 
Аватара пользователя
 i 
Slow в сообщении #961142 писал(а):
Еще такая задачка попалась:
Чему изоморфна фактор группа $S_4/K_4$, где $K_4$ это группа Клейна.
Slow, новые вопросы оформляйте в виде новых тем.

 
 
 [ Сообщений: 10 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group