Решаю следующую задачу:
Докажите, что расстояние между точками, лежащими на сфере, можно измерять по хорде и по дуге, не превосходящей половины длины большого круга. Установите связь между этими метриками.С хордой все понятно, проведем, например, начало координат в центре сферы, и будем мерить хорду как расстояние между двумя точками, формулой:

Первые две аксиомы, очевидно, выполняются, для третьей :

Возвести обе части в квадрат и в левой части сгруппировать соответствующие для

модули и применить для них правило треугольника.
А вот как померить дугу на сфере не очень понятно, формулы какой-то конкретной не видно. Причем, нужно выбирать видимо так, чтобы потом можно было с хордой связать. Подскажите пожалуйста, в каком направлении мыслить дальше.