2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Задача про пучок гипербол
Сообщение18.12.2014, 00:23 
Требуется найти гмт центров гипербол, проходящих через две фиксированные точки $P,Q$ и имеющих одни и те же асимптотические направления. В указании предлагается рассмотреть пучок какой-то.

Ну собственно мои потуги кончаются на попытки построить пучок гипербол нужных. Для чего я пытаюсь соорудить четвертую точку, но у меня не выхрлит.

 
 
 
 Re: Задача про пучок гипербол
Сообщение18.12.2014, 00:47 
Аватара пользователя
Не ограничивая общности можно считать, что асимптотические направления—это $(1,k)$ и $(1,-k)$. Тогда уравнение такой гиперболы будет содержать 3 параметра:
$$
k^2(x-a)^2 - (y-b)^2 = c,
$$
где $M(a,b)$ — центр. Считая что $P(x_1,y_1)$ и $Q(x_2,y_2)$

  • Что означает что они лежат на гиперболе?
  • Исключите $c$ и получите уравнение от-но $(a,b);
  • Какую линию оно определяет?

 
 
 
 Re: Задача про пучок гипербол
Сообщение18.12.2014, 01:38 
Ну если следовать вашим словам получаем $k^2(x_{1}-a)^2-(y_{1}-b)^2=k^2(x_{2}-a)^2-(y_{2}-b)^2$.
И все очень просто.
Но почему мы не ограничиваем общность если говорим, что второе направление для $(1,k)$ - $(1,-k)$?

 
 
 
 Re: Задача про пучок гипербол
Сообщение18.12.2014, 01:42 
Аватара пользователя
pooh__ в сообщении #948644 писал(а):
о почему мы не ограничиваем общность если говорим, что второе направление для

Поворот!

 
 
 
 Re: Задача про пучок гипербол
Сообщение18.12.2014, 01:53 
Ой точно. Спасибо большое!
А как вот при решении таких задач нужно думать(понимаю что вопрос глупый, но есть ли какие либо общие соображения?)

 
 
 
 Re: Задача про пучок гипербол
Сообщение18.12.2014, 03:26 
Аватара пользователя
pooh__ в сообщении #948648 писал(а):
но есть ли какие либо общие соображения?

Помогает упрощение, не уменьшающее общности. В частности, в Вашей задаче вообще можно было считать что $k=1$: растяжение вдоль одной из осей. Ну здесь от него пользы мало.

 
 
 [ Сообщений: 6 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group