Вообще то несложно с помощью подсчёта произведения всех делителей чисел kp+1,k=1,2,...,p показать, что хотя бы для одного p(kp+1)>p. Но показать, что при этом p(kp-1)<p усложняет ситуацию. Поэтому дам другое доказательство. Очевидно, что существует бесконечно много таких х, что p(x)>p(x-1). Если для такого х выполняется, что p(x+1)>p(x), то доказывать ничего. Иначе рассмотрим числа

. Так как

при k>0, то ситуация

для всех k невозможна. Поэтому, существует такое k, что

. Тогда

удовлетворяет всем требованиям

.