2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Задача 10.366 из задачника Сканави.
Сообщение29.10.2014, 10:05 
Задача № 10.366 из задачника Сканави.
Условие задачи:
Две окружности касаются внешним образом в точке $A$. Найти радиусы окружностей, если хорды, соединяющие точку $A$ с точками касания одной из общих внешних касательных, равны 6 и 8 сантиметров.
Изображение

Решение.
Проведём общую касательную $BC$ к двум данным окружностям с центрами $O_{1}$ и $O_{2}$ ($B$ и $C$ - точки касания), $AB=8$, $AC=6$. Проводим касательную в точке $A$ до пересечения с $BC$ в точке $D$. Тогда $DA=DB=DC \Rightarrow BC=\sqrt{6^2+8^2}=10$, $BD=5$, $\angle AO_2C=180^\circ - \angle ADC= \angle BDA \Rightarrow \bigtriangleup ABD$ \sim \bigtriangleup ACO_2 \Rightarrow \frac{BD}{AO_2} = \frac{AB}{AC} \Rightarrow $ AO_2 = \frac{15}{4}$.

Рассуждая аналогично, получаем $AO_1 = \frac{20}{3}$.

Ответ: $\frac{15}{4}$ см, $\frac{20}{3}$.

Непонятные моменты: Из какой теоремы или из какого свойства вытекает равенство $\angle AO_2C=180^\circ - \angle ADC$?

 
 
 
 Re: Задача 10.366 из задачника Сканави.
Сообщение29.10.2014, 10:14 
Так у вас в четырехугольнике $ADCO_2$ два угла $\angle DAO_2$ и $\angle DCO_2$ -- прямые (а сумма углов в любом четырехугольнике всегда $360^{\circ}$)

 
 
 
 Re: Задача 10.366 из задачника Сканави.
Сообщение29.10.2014, 10:15 
Аватара пользователя
Charlz_Klug в сообщении #924018 писал(а):
Непонятные моменты: Из какой теоремы или из какого свойства вытекает равенство $\angle AO_2C=180^\circ - \angle ADC$?
Это углы четырехугольника с двумя другими прямыми углами.

 
 
 
 Re: Задача 10.366 из задачника Сканави.
Сообщение30.10.2014, 09:01 
Большое спасибо откликнувшимся! Помогли разобраться с решением.

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group