2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Сопряженные в банаховых и гильбертовых пространствах
Сообщение20.10.2014, 09:45 
Помогите плз доказать, что сопряженные в гильбертовом (т.е. и банаховом) пространстве $H$ связаны так: $T'=R^{-1}T^*R$, где $R\colon H^*\to H$ – изометрия Рисса, $T'\colon H^*\to H^*$ – сопряженный в банаховом, $T^*\colon H\to H$ – сопряженный в гильбертовом.

Не знаю с чего начать... :cry:

 
 
 [ 1 сообщение ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group