2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Игра в кости.
Сообщение15.10.2014, 21:43 
Аватара пользователя
Цитата:
В старинной игре в кости необходимо было для выигрыша получить при бросании трех игральных костей сумму очков, превосходящую 10. Найти вероятность выпадения 11 очков.


Перебором посчитал, что число благоприятных исходов $27$. Отсюда искомая вероятность $P(A)=\frac{27}{216}=\frac{1}{8}$
Можно ли посчитать количество благоприятных исходов более изящно,чем просто перебором?

upd: есть ещё такой вариант:

Выпишем подходящие наборы из трех чисел от 1 до 6: $(1,4,6),(1,5,5),(2,3,6),(2,4,5),(3,3,5),(3,4,4)$
Всевозможные варианты можно получить как перестановки из этих чисел, при этом там,где два одинаковых числа - будет 3 варианта, а где все три разные - 6 вариантов.
Итого вариантов: $6+6+6+3+3+3=27$

 
 
 
 Re: Игра в кости.
Сообщение16.10.2014, 09:47 
Аватара пользователя
В принципе, по-другому посчитать можно. Количество способов разбить натуральное $n$ в упорядоченную сумму $k$ натуральных слагаемых определяется комбинаторным числом сочетаний из $n-1$ по $k-1$, величиной $C_{n-1}^{k-1}$. В данном случае эта величина равна числу сочетаний из 10 по 2: $C_{11-1}^{3-1}=C_{10}^2=45$. Отсюда нужно вычесть число способов сделать это так, что одно из слагаемых равно 7, 8 или 9 (соответственно $3C_3^1=9$, $3C_2^1=6$, $3C_1^1=3$, что определяется по той же формуле). Получаем число подходящих элементарных исходов:
$C_{10}^2-3(C_3^1+C_2^1+C_1^1)=45-9-6-3=27$.

 
 
 
 Re: Игра в кости.
Сообщение01.10.2024, 01:11 
Хотел бы предложить чуть более подробное решение этой задачи, т.к. считаю, что знакомство с приёмом, описанным ниже, поможет в решении многих других задач из теории вероятности и комбинаторики.

Представим, что кубики пронумерованы. $x_1+ x_2 + x_3 = 11 $. Где $x_i$ -- это количество очков, которое выпало на соответствующем кубике.

Получим множество решений этого уравнения $x_1+ x_2 + x_3 = 11 $ геометрически.
Т.к. каждое $x_i \in \mathbb{N}$, то их можно интерпретировать как длину отрезка.
Пример:
Изображение
В этом случае $x_1 = 2, x_2 = 7, x_3 = 2$.

Чтобы получить 3 отрезка, нам необходимо каким-то образом расположить 2-е точки на интервале от 0 до 11.
Т.е. общее количество решений, рассматриваемого уравнения $C^{2}_{10}$.

Теперь, чтобы решить изначальную задачу, необходимо вычесть комбинации, в которых содержится 7, 8, 9.


Рассмотрим случай с 7:
Нам известно, что один из $x_i = 7$. Следовательно, сумма оставшихся чисел -- 4. Теперь наша задача сводится к тому, чтобы посчитать, сколько существует способов из 2-х чисел получить при сложении 4. Для этого применяем описанный выше приём. И получаем, что количество способов -- $C_{3}^{1}$. Т.к. 7-ку можно расположить в 3 разных позициях, то получаем, что всего комбинаций из 3-х чисел, в которых присутствует 7 и сумма чисел равна 11 --$3C_{3}^{1}$.

Аналогично рассматривается случай с 8 и 9.

Получаем, что ответ на исходную задачу таков:
$C^{2}_{10} - 3(C_{3}^{1} + C_{2}^{1} + C_{1}^{1})$

 
 
 
 Re: Игра в кости.
Сообщение01.10.2024, 03:23 
Аватара пользователя

(Оффтоп)

fedotic00, эх, ну что ж Вы не подождали пару недель! Было бы Ваше сообщение - как раз к первому юбилею стартового поста :D

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group