Впрочем есть люди, которые считают что три месяца это очень много.
Это вы не на меня намекаете?
В точку!
Особенно для такого конкурса, как числа Делакорта. Для него хватило бы с лихвой одного месяца
Начну с вот этого сообщения:
А у меня идеи кончились. Похоже что для следующего прогреса надо оптимизировать код (не знаю как) и гонять компьютер сутками чтобы увеличить бал хотя бы на 0.001. Это мне не хочется делать и поэтому задача надоела. Оставляю её пока не появятся хорошие идеи...
Очень интересная задача что-то весьма быстро надоела.
Мои задачи по пандиагональным квадратам не надоели мне за несколько лет!
Сравнивайте, сравнивайте! Был уже проведён один конкурс по пандиагональным квадратам из простых чисел (кстати, провёл его Al Zimmermann). Сейчас идёт второй конкурс - по пандиагональным квадратам из последовательных простых чисел
http://primesmagicgames.altervista.org/wp/competitions/Я дала на этот конкурс три месяца, потому что задачи конкурса очень сложные. Я это прекрасно знаю, ибо сама вот уже два месяца бьюсь над решением этих конкурсных задач (n=7, n=8).
На конкурсе пока не выложили ни одного решения!
Далее: в первые же дни конкурса я спросила в дискуссионной группе, как это все так быстро умудрились решить задачу почти по максимуму. Ответил один участник: у него алгоритм
имитация отжига работал примерно два часа. Класс!
То есть берём самый простой алгоритм, пишем программу и на кластере (ну, на худой конец на 40 ядрах) за 2 часа получаем решения на 24,99+
Что дальше делать?
Гонять сутками машину в поисках ещё 0.001?
Ах да - теоретизировать. Как быстрее вычислить изменение числа Делакорта при парной, тройной и т.д. перестановках. А на... черта всё это нужно? Я, к примеру, вообще ничего не вычисляла, всё за меня делала программа приёма решений.
Ну, кто любит теоретизировать, флаг им в руки. Я не люблю. Я практик. Вот построить пандиагональный квадрат 8-го порядка из последовательных простых чисел я очень хочу. И для этого мной придуман уже не один алгоритм и не одна эвристика. Небольшой прорыв есть (вряд ли кто-нибудь следит за моими сообщениями на форуме, где проходит конкурс; а зря).
(Оффтоп)
Бесконечно рада, что сначала сайт "упал", что привело к вынужденной остановке моих занятий, так как я все решения улучшала в визуализаторе.
Думала, что это будет просто перерыв. И ещё больше рада, что этот перерыв будет не временным.
А причина в том, что Ал забанил меня в его дискуссионной группе.
Не появились два мои последние сообщения. Я недоумевала - почему не появились. А сегодня вошла в дискуссионную группу и... Yahoo сообщает мне, что два мои сообщения не были утверждены.
Ага! Ну, теперь стало понятно. Не пропустил Ал.
А сообщения-то были вполне нейтральные, никакого негатива не содержали.
Вот первое:
Цитата:
Al
I must say that the visualizer made wonderful.
I love the transformation of solutions to the canonical form, when I see well what numbers should must be moved.
Thank you very much!
А во втором я предлагала выложить визуализатор для оффлайн использования.
И в чём тут криминал?
Весьма раздосадованная, пишу Алу письмо с просьбой объяснить, как это понимать?
Ответ был таким:
Цитата:
All messages must be approved by me. Sometimes I choose not to approve a message if I feel it does not make a positive contribution to the AZsPCs experience.
Вот так!
Ну и начхать я хотела на его конкурс
О чём ему и сообщила.
Ах да, а причина блокирования сообщений, вероятно, в предыдущей моей критике конкурса.
Ну, что думала, то и сказала. Лицемерить не обучена.
Всем удачи! В теории и в практике
Я вполне довольна своим результатом: 19 баллов с хвостиком при ручной работе, без всяких программ. Потенциал ещё остался, но теперь уже, слава Богу, больше не буду играть с визуализатором.
-- Чт ноя 27, 2014 21:54:46 --(Оффтоп)
Кстати,
Pavlovskyвы назвали решение Макса для
(наименьший пандиагональный квадрат из последовательных простых чисел) великим результатом.
Да. Согласна.
Ничто не мешает вам найти второй
великий результат - наименьший пандиагональный квадрат 5-го порядка из последовательных простых чисел
(пока нет ни одного такого квадрата)
И ещё: тема-то
"Дьявольские магические квадраты из простых чисел" всё просматривается и просматривается. Кто же её смотрит-то так активно?
Да, актуальная тема, и долго ещё будет актуальна, ибо нерешённые проблемы остались.
Я могла бы многое в эту тему добавить из своих последних исследований, но... не буду. Читайте мои сообщения на сайте S. Tognon.