2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Аппроксимация рационально полиномиальной функцией
Сообщение28.09.2014, 17:53 
Аватара пользователя
Помогите разобраться с аппроксимация рационально полиномиальной функцией
$R(x) = \frac{P(x)}{Q(x)} = \frac{\sum_ {k=0}^{M} b_{k} x ^{k} } { 1 + \sum_ {k=1}^{L} a_{k} x ^{k}} $
Помогите разобраться как это сделать? Интересует аппроксимация по методу МНК или любым другим.
Интересует M,L около 10 и более
Приветствуются книги, статьи, алгоритмы.

 
 
 
 Re: Аппроксимация рационально полиномиальной функцией
Сообщение28.09.2014, 18:01 
Аватара пользователя
Как вариант.

 
 
 
 Re: Аппроксимация рационально полиномиальной функцией
Сообщение28.09.2014, 18:08 
Pavia в сообщении #913247 писал(а):
Помогите разобраться с аппроксимация рационально полиномиальной функцией ...
Интересует M,L около 10 и более...
В крайнем случае можно свести к общей задаче минимизации [квадрата] невязки - нелинейная минимизация функции от "около 20 и более" переменных $a_k, b_k$.

 
 
 
 Re: Аппроксимация рационально полиномиальной функцией
Сообщение28.09.2014, 18:09 

(глупый оффтоп)

Я ничего не понимаю, но можно взять $M+L+1$ значений исходной функции, подставить, получить СЛУ с $M+L+1$ уравнениями, у которой определитель что-то вроде определителя Вандермонда. Ну и решить ее.
Хотя это будет интерполяция, а не аппроксимация :facepalm: :oops:

 
 
 
 Re: Аппроксимация рационально полиномиальной функцией
Сообщение28.09.2014, 19:07 
Или я что-то не понимаю, или это аппроксимация Паде.

Если второе, то в любом гугле по словосочетаниям "аппроксимация Паде" и "алгоритм аппроксимации Паде" найдется целый воз книг, статей и алгоритмов.

 
 
 
 Re: Аппроксимация рационально полиномиальной функцией
Сообщение28.09.2014, 20:42 
Pphantom в сообщении #913281 писал(а):
Или я что-то не понимаю, или это аппроксимация Паде.

Нет, это отнюдь не Паде. Паде -- это всего лишь разложение в ряд, а здесь требуется именно сглаживание.

Строго говоря, эта задача явно некорректна. Хотя бы потому, что если задать эту рациональную дробь наобум, а потом рассыпать точки как угодно вдоль графика, то сама эта дробь, естественно, и будет решением. Однико при этом она запросто может иметь разрывы между точками; а оно нам надо?...

 
 
 
 Re: Аппроксимация рационально полиномиальной функцией
Сообщение28.09.2014, 21:02 
ewert в сообщении #913362 писал(а):
Нет, это отнюдь не Паде. Паде -- это всего лишь разложение в ряд, а здесь требуется именно сглаживание.
В имеющейся постановке, по идее, одно легко сводится к другому - аппроксимируем данные полиномами, считаем полученную аппроксимацию точным рядом Тейлора, считаем аппроксимацию Паде. Поскольку точного критерия аппроксимации нет, то, возможно, и так сойдет. :D

 
 
 
 Re: Аппроксимация рационально полиномиальной функцией
Сообщение28.09.2014, 21:10 
Pphantom в сообщении #913379 писал(а):
возможно, и так сойдет.

Не сойдёт: по мере удаления от точки разложения Паде будет приплясывать относительно полинома (якобы наилучшего) всё сильнее. Т.е. такая процедура с практической точки зрения попросту бессмысленна.

 
 
 
 Re: Аппроксимация рационально полиномиальной функцией
Сообщение28.09.2014, 21:16 
ewert в сообщении #913386 писал(а):
Не сойдёт: по мере удаления от точки разложения Паде будет приплясывать относительно полинома (якобы наилучшего) всё сильнее. Т.е. такая процедура с практической точки зрения попросту бессмысленна.
Да, пожалуй. Ладно, значит это отменяется.

 
 
 
 Re: Аппроксимация рационально полиномиальной функцией
Сообщение28.09.2014, 21:43 
Аватара пользователя
ewert
Пока бегло пробежался. Насколько понял аппроксимация Падье это преобразования ряда в дробь.
По поводу разрывов. Для тех задач которые мне надо решать они только вредят. Но хотелось бы иметь полный ответ. Уметь решать и те задачи где есть разрывы и где их не должно быть.

Цитата:
Хотя бы потому, что если задать эту рациональную дробь наобум, а потом рассыпать точки как угодно вдоль графика, то сама эта дробь, естественно, и будет решением.
Есть теория которая расходиться с практикой. Теоретически искажения от линзы описываются рационально полиномиальной функцией, а практика показывает что устранение лучше вести полиномиальной функцией. Но это второстепенная задача.
Первичная задача. Пользователь вводит передаточную функцию КИХ фильтра. В принципе она табулированная и может быть какой угодно. В том смысле что это не классический радио фильтр заграждающий и все пропускающей.
Так вот этот фильтр хочу аппроксимировать БИХ фильтром или рекурсивным.

Pphantom
Да и в правду в 3-ей ссылке было описание и книга. Странно вроде до этого искал по этим же словам и ничего не нашел. :oops:
Ушел читать "Бейкер Дж., Грейвс-Моррис П. (Baker,Graves-Morris) Аппроксимации Паде"

Гиф, что-то не вставляется. Рис 1.
http://www.ega-math.narod.ru/Books/Baker.htm
Проблема Паде в том что надо раскладывать функцию в ряд и усекать его. А при этом теряется значительная часть информации.
Посмотрите насколько расходится ряд Тейлора и аппроксимация.
До сих пор не нашел ответа о том как выбирать M и L что-бы получить наилучшее и/или правильную аппроксимацию. Пока предполагаю перебором.

Sonic86
Не всё так просто. При умножение на знаменатель теряется информация о полюсах, а они очень сильно влияют на результат. Как бы 3 проблемы я уже озвучил. А ещё есть ряд проблем: как влияет округления при промежуточных решениях и зависимость точности от исходных данных.
Но думаю придется всё аккуратно расписать ручками. И использовать наработке по Паде аппроксимации которые найду в книгах.

Yuri Gendelman
Для меня это тёмный лес.

 
 
 
 Re: Аппроксимация рационально полиномиальной функцией
Сообщение28.09.2014, 21:56 
Аватара пользователя
Pavia в сообщении #913412 писал(а):
Пользователь вводит передаточную функцию КИХ фильтра. В принципе она табулированная и может быть какой угодно. В том смысле что это не классический радио фильтр заграждающий и все пропускающей.
Так вот этот фильтр хочу аппроксимировать БИХ фильтром или рекурсивным.

Если в книгах по фильтрам этого нет, то смотрите книге по анализу временных рядов (например Бокса - Дженкинса). Задача: как из ряда скользящего среднего получить авторегрессию и как выбрать её порядок.

 
 
 [ Сообщений: 11 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group