Нашёл и прочёл.
Как я и понял вначале, №1 это один шаг простых итераций с начальным приближением в виде единичного вектора, №2 то же самое, но с транспонированной матрицей, и в качестве решения предлагаются обратные к элементам собственного вектора этой матрицы, №3 это два шага простых итераций, первый с транспонированной, а результат используется в качестве приближения для шага с исходной матрицей. В №4 перемножаются коэффициенты в строке, получая среднее геометрическое, он основан на надежде, что ранг матрицы равен единице и

(что, вообще говоря, не гарантировано).
Метод №5 предполагает получение

,

, что достаточно затратно, поскольку для матрицы 1000х1000 нужно миллиард умножений и миллиард сложений для хотя бы квадрата (n-ная степень может быть получена быстрее, чем за n умножений, за величину порядка логарифма n, скажем, для 1024-й степени понадобится лишь 10 возведений матрицы в квадрат, но и это многовато).
Но заметим, что в методе простых итераций

с точностью до нормировки, причём для указанной размерности шаг в тысячу раз дешевле.
-- 17 сен 2014, 15:16 --Методы №№ 1-4 приближённые, причём оценить точность нельзя (в пределах самого метода, вообще же подставить и проверить, насколько

отлично от

не возбраняется), №5 точный и в точной арифметике даст то же, что метод простых итераций, но в силу резкого возрастания числа операций может давать большую ошибку.