2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Задача на «оценку наименьших квадратов»
Сообщение03.09.2014, 23:24 
Здравствуйте, господа математики.
Наткнулся на задачу, к которой вообще не знаю, с какой стороны подступиться.

Цитата:
В $\bigtriangleup ABC$ независимые равноточные измерения $\angle \alpha = \angle CAB, \angle \beta = \angle ABC, \angle \gamma = \angle BCA$ дали результаты $50.78°, 40.59°, 89.86°$ соответственно.
Ошибки измерения распределены нормально, по закону $\mathcal{N}(0, \sigma ^ 2)$. Найдите оценку наименьших квадратов для $\angle \alpha, \angle \beta$.

Сама постановка призывает к использованию метода наименьших квадратов. Однако в данной задаче я даже не представляю, как именно должна выглядеть сумма квадратов разности для МНК, чтобы потом её продифференцировать и найти точку минимума.
Просветите, пожалуйста.

 
 
 
 Re: Задача на «оценку наименьших квадратов»
Сообщение04.09.2014, 08:11 
Аватара пользователя
Сумма квадратов отклонений оценок углов от измеренных минимизируется, при условии - сумма оценок равна 180 градусов.
Лагранжем, или выразив оценку третьего угла через две других и расписав квадрат. Первое изящнее и более общо, второе не требует знаний выше 6-го класса.

 
 
 
 Re: Задача на «оценку наименьших квадратов»
Сообщение04.09.2014, 09:42 
Аватара пользователя
Евгений Машеров в сообщении #903650 писал(а):
...при условии - сумма квадратов оценок равна 180 градусов.
Слово "квадратов" - лишнее.

 
 
 
 Re: Задача на «оценку наименьших квадратов»
Сообщение04.09.2014, 09:47 
Аватара пользователя
Спасибо. Описку исправил.

 
 
 
 Re: Задача на «оценку наименьших квадратов»
Сообщение04.09.2014, 13:09 
Евгений Машеров в сообщении #903650 писал(а):
Сумма квадратов отклонений оценок углов от измеренных минимизируется, при условии - сумма оценок равна 180 градусов.

То есть, я верно понимаю, что получается вот так?
Чтобы не возиться раньше времени с арифметикой, сделал замену: $50.78 = \alpha_0, 40.59 = \beta_0, 89.86 = \gamma_0$.

1. Составляем функцию:
$F(\alpha, \beta) = (\alpha_0 - \alpha) ^ 2 + (\beta_0 - \beta) ^ 2 + (\gamma_0 - (180 - \alpha - \beta)) ^ 2$.

Пусть $\gamma_1 = \gamma_0 - 180$, тогда
$F(\alpha, \beta) = (\alpha_0 - \alpha) ^ 2 + (\beta_0 - \beta) ^ 2 + (\gamma_1 + \alpha + \beta) ^ 2 \rightarrow \min$.

2. Берём частные производные по $\alpha, \beta$:
$\frac{\partial F}{\partial \alpha} = -2(\alpha_0 - \alpha) + 2(\gamma_1 + \alpha + \beta) = 0$,
$\frac{\partial F}{\partial \beta} = -2(\beta_0 - \beta) + 2(\gamma_1 + \alpha + \beta) = 0$.

3. Получаем СЛАУ:
$\begin{equation*}
\begin{cases}
2 \alpha + \beta = \alpha_0 - \gamma_1, \\
\alpha + 2 \beta = \beta_0 - \gamma_1.
\end{cases}
\end{equation*}$

4. Решаем, подставляем, получаем ответ:
$\begin{equation*}
\begin{cases}
\alpha = -{1 \over 3}(\gamma_1 +\beta_0 - 2 \alpha_0), \\
\beta = -{1 \over 3}(\gamma_1 + \alpha_0 - 2 \beta_0).
\end{cases}
\end{equation*}$

$\alpha = 50.37, \beta = 40.18$

Я прав? Если нет, то прошу указать на ошибки. Если да — то проясните, пожалуйста, один момент. Что бы изменилось, будь распределение иным?
Явным образом оно здесь нигде не применяется — но определённо на что-то влияет, иначе не было бы указано.
Так вот: как быть, если в условиях попадётся другое распределение? Чувствую, что не понимаю чего-то фундаментального…

 
 
 
 Re: Задача на «оценку наименьших квадратов»
Сообщение04.09.2014, 13:42 
Аватара пользователя
blondinko в сообщении #903730 писал(а):
Я прав?
Да, все верно.
blondinko в сообщении #903730 писал(а):
Что бы изменилось, будь распределение иным?
Дело в том, что метод наименьших квадратов появляется не сам по себе, а вытекает из метода максимального правдоподобия. Если по этому методу построить функцию правдоподобия, то она получится квадратичной в случае нормально распределенных ошибок наблюдения (как у вас), и тогда задача решается методом наименьших квадратов, а если распределение будет другим, то и функция правдоподобия будет другого вида, и решать задачу придется другим методом - скорее всего численным.

 
 
 
 Re: Задача на «оценку наименьших квадратов»
Сообщение04.09.2014, 15:00 
Благодарю, кажется начало доезжать :roll:

 
 
 
 Re: Задача на «оценку наименьших квадратов»
Сообщение04.09.2014, 15:53 
Аватара пользователя
Всё верно, хотя последние выражения я бы записал, как $\begin{equation*}
\begin{cases}
\alpha =  \alpha_0-{1 \over 3}( 180 - \alpha_0-\beta_0 -\gamma_0 ), \\
\beta =  \beta_0-{1 \over 3}(180 - \alpha_0 -  \beta_0-\gamma_0).
\end{cases}
\end{equation*}$
Оно как-то очевиднее выходит, общую невязку равномерно распределяем.
Да, МНК оптимален для нормального распределения. Не только в смысле максимального правдоподобия, но, скажем, как несмещённая эффективная оценка.
Для, скажем, двустороннего распределения Лапласа оптимален метод наименьших модулей. Информация о распределении, если уж предписано использовать МНК, лишь "для сведения". А вот, что $N(0,\sigma^2)$ существенно, первый параметр уверяет нас, что нет систематической ошибки (а если бы была - очевидное введение поправок на неё), а второй - что измерения равноточные (если бы дисперсии были разные для разных измерений - понадобился бы взвешеный МНК).

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group