2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Теореме об ожерелье
Сообщение28.07.2014, 19:22 
Помогите, пожалуйста, доказать теорему произведения чисел ожерелья.

Само число ожерелий вычисляется по формуле:

$% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa
% aaleaacaWGRbaabeaakiaacIcacaWGUbGaaiykaiabg2da9maaqafa
% baGaamytaiaacIcacaWGKbGaaiykaaWcbaGaamizaiaacYhacaWGUb
% aabeqdcqGHris5aOGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOBaaaa
% daaeqbqaaiabeA8aQjaacIcacaWGKbGaaiykaiabgwSixlaadUgada
% ahaaWcbeqaamaalaaabaGaamOBaaqaaiaadsgaaaaaaaqaaiaadsga
% caGG8bGaamOBaaqab0GaeyyeIuoaaaa!5488!
\[{N_k}(n) = \sum\limits_{d|n} {M(d)}  = \frac{1}{n}\sum\limits_{d|n} {\varphi (d) \cdot {k^{\frac{n}{d}}}} \]$

Нужно доказать формулу произведения:

$% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci
% GGSbGaaiyAaiaac2gaaSqaaiaad6gacqGHsgIRcqGHEisPaeqaaOWa
% aebCaeaacaWGobWaaSbaaSqaaiaadUgaaeqaaOGaaiikaiaad6gaaS
% qaaiaad6gacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHpis1aOGaaiyk
% aiabg2da9maalaaabaGaam4AamaaCaaaleqabaGaamOBaaaaaOqaai
% aad6gacaGGHaaaaiaaigdacaGGOaGaaGymaiabgUcaRiaadIfacaGG
% PaGaaiikaiaaigdacqGHRaWkcaWGybGaey4kaSIaamiwamaaCaaale
% qabaGaaGOmaaaakiaacMcacaGGUaGaaiOlaiaac6cacaGGOaGaaGym
% aiabgUcaRiaadIfacqGHRaWkcaWGybWaaWbaaSqabeaacaaIYaaaaO
% Gaey4kaSIaaiOlaiaac6cacaGGUaGaey4kaSIaamiwamaaCaaaleqa
% baGaamOBaiabgkHiTiaaigdaaaGccaGGPaGaaGzbVlaac6gacqGHsg
% IRcqGHEisPaaa!6D7E!
\[\mathop {\lim }\limits_{n \to \infty } \prod\limits_{n = 1}^n {{N_k}(n} ) = \frac{{{k^n}}}{{n!}}1(1 + X)(1 + X + {X^2})...(1 + X + {X^2} + ... + {X^{n - 1}})\quad n \to \infty \]$

С чего начать лучше?

 
 
 
 Re: Теореме об ожерелье
Сообщение29.07.2014, 02:19 
Аватара пользователя
левая часть от $n$ не зависит и от $X$ не зависит, а в правой есть и то и другое

 
 
 
 Re: Теореме об ожерелье
Сообщение29.07.2014, 08:55 
Аватара пользователя
 i  aspair, сформулируйте задачу корректно, иначе тема пойдёт в Карантин.

 
 
 
 Re: Теореме об ожерелье
Сообщение29.07.2014, 12:10 
Формула взята отсюда Necklace_(combinatorics)

У нас известно:

$% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa
% aaleaacaWGRbaabeaakiaacIcacaWGUbGaaiykaiabg2da9maaqafa
% baGaamytaiaacIcacaWGKbGaaiykaaWcbaGaamizaiaacYhacaWGUb
% aabeqdcqGHris5aOGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOBaaaa
% daaeqbqaaiabeA8aQjaacIcacaWGKbGaaiykaiabgwSixlaadUgada
% ahaaWcbeqaamaalaaabaGaamOBaaqaaiaadsgaaaaaaaqaaiaadsga
% caGG8bGaamOBaaqab0GaeyyeIuoaaaa!5488!
\[{N_k}(n) = \sum\limits_{d|n} {M(d)}  = \frac{1}{n}\sum\limits_{d|n} {\varphi (d) \cdot {k^{\frac{n}{d}}}} \]$

Берем произведение:

$% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci
% GGSbGaaiyAaiaac2gaaSqaaiaad6gacqGHsgIRcqGHEisPaeqaaOWa
% aebCaeaacaWGobWaaSbaaSqaaiaadUgaaeqaaOGaaiikaiaad6gaca
% GGPaaaleaacaWGUbGaeyypa0JaaGymaaqaaiaad6gaa0Gaey4dIuna
% kiabg2da9maaxababaGaciiBaiaacMgacaGGTbaaleaacaWGUbGaey
% OKH4QaeyOhIukabeaakmaarahabaWaaSaaaeaacaaIXaaabaGaamOB
% aaaadaaeqbqaaiabeA8aQjaacIcacaWGKbGaaiykaiabgwSixlaadU
% gadaahaaWcbeqaamaalaaabaGaamOBaaqaaiaadsgaaaaaaaqaaiaa
% dsgacaGG8bGaamOBaaqab0GaeyyeIuoaaSqaaiaad6gacqGH9aqpca
% aIXaaabaGaamOBaaqdcqGHpis1aOGaeyypa0ZaaCbeaeaaciGGSbGa
% aiyAaiaac2gaaSqaaiaad6gacqGHsgIRcqGHEisPaeqaaOWaaSaaae
% aacaaIXaaabaGaamOBaiaacgcaaaWaaebCaeaadaaeqbqaaiabeA8a
% QjaacIcacaWGKbGaaiykaiabgwSixlaadUgadaahaaWcbeqaamaala
% aabaGaamOBaaqaaiaadsgaaaaaaaqaaiaadsgacaGG8bGaamOBaaqa
% b0GaeyyeIuoaaSqaaiaad6gacqGH9aqpcaaIXaaabaGaamOBaaqdcq
% GHpis1aaaa!84DC!
\[\mathop {\lim }\limits_{n \to \infty } \prod\limits_{n = 1}^n {{N_k}(n)}  = \mathop {\lim }\limits_{n \to \infty } \prod\limits_{n = 1}^n {\frac{1}{n}\sum\limits_{d|n} {\varphi (d) \cdot {k^{\frac{n}{d}}}} }  = \mathop {\lim }\limits_{n \to \infty } \frac{1}{{n!}}\prod\limits_{n = 1}^n {\sum\limits_{d|n} {\varphi (d) \cdot {k^{\frac{n}{d}}}} } \]$

Тут necklaces получили это:
$% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci
% GGSbGaaiyAaiaac2gaaSqaaiaad6gacqGHsgIRcqGHEisPaeqaaOWa
% aebCaeaacaWGobWaaSbaaSqaaiaadUgaaeqaaOGaaiikaiaad6gaca
% GGPaaaleaacaWGUbGaeyypa0JaaGymaaqaaiaad6gaa0Gaey4dIuna
% kiabgIKi7oaalaaabaGaam4AamaaCaaaleqabaGaamOBaaaaaOqaai
% aad6gacaGGHaaaaiaaigdacqGHflY1caGGOaGaaGymaiabgUcaRiaa
% dUgadaahaaWcbeqaaiaaigdaaaGccaGGPaGaaiOlaiaac6cacaGGUa
% GaaiikaiaaigdacqGHRaWkcaWGRbWaaWbaaSqabeaacaaIXaaaaOGa
% ey4kaSIaaiOlaiaac6cacaGGUaGaey4kaSIaam4AamaaCaaaleqaba
% GaamOBaiabgkHiTiaaigdaaaGccaGGPaGaaiilaiaaywW7caGGUbGa
% eyOKH4QaeyOhIukaaa!6A09!
\[\mathop {\lim }\limits_{n \to \infty } \prod\limits_{n = 1}^n {{N_k}(n)}  \approx \frac{{{k^n}}}{{n!}}1 \cdot (1 + {k^1})...(1 + {k^1} + ... + {k^{n - 1}}),\quad n \to \infty \]$

Как это получили не пойму. Никак не пойму откуда $% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaCa
% aaleqabaGaamOBaaaaaaa!3826!
\[{{k^n}}\]$ вперед вышло.

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group