Я по рабоче-крестьянски понял, что грузик на пружинке работает следующим образом:
1. Берем результаты наблюдений за Луной r'(t) (ну или углы там).
2. Записываем законы Ньютона для тел, которые по нашему мнению существенным образом влияют на движение Луны.
3. Решаем ДУ, варьируя начальные условия пока среднеквадратичное отклонение r'(t) от r(t) не достигнет минимума.
4. Объявляем, что получена теория движения Луны и уже через год не находим Луну там где посчитали. Расстраиваемся)
Нет, происходит примерно следующее. Допустим, мы хотим построить теорию движения камня, брошенного под углом к горизонту. Мы берём начальные данные (скорость, угол бросания) и интегрируем уравнения движения камня. Получаем параболу типа
,
(численные значения параметров
и
нам известны). Затем мы вычисляем для этой функции, например, пять первых членов тригонометрического ряда Фурье по синусам, и получаем
Эту формулу мы и объявляем "теорией движения камня".
При построении теории движения планет и их спутников поступают примерно так же. Только в результате интегрирования уравнений движения получается не компактная формула, как в моём примере, а громадная таблица чисел, и вместо разложения в ряд Фурье используются другие методы.