Ну это техническая задача. 
Вот 
здесь описан ручной метод. А вот как ее решает GAP с пакетом 
RadiRoot:
Код:
GAP4, Version: 4.4.9 of 6-Nov-2006, x86_64-pc-linux-gnu-x86_64-linux-gnu-gcc
Components:  trans 1.0  loaded.
Packages:    Alnuth 2.2.5, Polycyclic 2.2  loaded.
gap> LoadPackage("radiroot");
-------------------------------------------------------------------------------------------------------------------------
Loading  RadiRoot 2.2 (Roots of a Polynomial as Radicals)
by Andreas Distler (a.distler@tu-bs.de).
-------------------------------------------------------------------------------------------------------------------------
true
gap> x := Indeterminate( Rationals, "x" );;
gap> f := UnivariatePolynomial( Rationals, [-18,20,0,10,0,1] );
x^5+10*x^3+20*x-18
gap> IsSolvablePolynomial(f);
true
gap> RootsOfPolynomialAsRadicals( f, "latex" );
"/tmp/tmp.hDz4FG/Nst.tex"
Содержимое Nst.tex такое:
An expression by radicals for the roots of the polynomial 

 with the 

-th root of unity 

 and
![$\omega_1 = \sqrt[2]{ - 1017000 + 1638500\zeta_{5}^{3} + 1638500\zeta_{5}^{4}},$ $\omega_1 = \sqrt[2]{ - 1017000 + 1638500\zeta_{5}^{3} + 1638500\zeta_{5}^{4}},$](https://dxdy-04.korotkov.co.uk/f/7/c/8/7c8b02189dad9a076b4c0fdeaf2f554e82.png) 
![$\omega_2 = \sqrt[5]{207 + 630\zeta_{5} + 630\zeta_{5}^{3} + 270\zeta_{5}^{4} + \frac{17}{25}\omega_1 + \frac{9}{25}\zeta_{5}\omega_1 + \frac{3}{50}\zeta_{5}^{3}\omega_1 + \frac{3}{10}\zeta_{5}^{4}\omega_1},$ $\omega_2 = \sqrt[5]{207 + 630\zeta_{5} + 630\zeta_{5}^{3} + 270\zeta_{5}^{4} + \frac{17}{25}\omega_1 + \frac{9}{25}\zeta_{5}\omega_1 + \frac{3}{50}\zeta_{5}^{3}\omega_1 + \frac{3}{10}\zeta_{5}^{4}\omega_1},$](https://dxdy-02.korotkov.co.uk/f/9/a/b/9ab262411991ae385601fb0a40a99a7482.png) 
is:
 
 