1. Предложение.Пусть даны простые числа


их первообразные корни, соответственно.



- примарные.
Обозначим

Тогда
![$$\[
\left\{ \begin{array}{l}
\left( {a + bs } \right)^{\frac{{Q - 1}}{3}} \equiv s^k \left( {\bmod Q} \right) \\
\left( {c + ds} \right)^{\frac{{P - 1}}{3}} \equiv s^k \left( {\bmod P} \right) \\
\end{array} \right.
\]$ $$\[
\left\{ \begin{array}{l}
\left( {a + bs } \right)^{\frac{{Q - 1}}{3}} \equiv s^k \left( {\bmod Q} \right) \\
\left( {c + ds} \right)^{\frac{{P - 1}}{3}} \equiv s^k \left( {\bmod P} \right) \\
\end{array} \right.
\]$](https://dxdy-01.korotkov.co.uk/f/0/d/4/0d41a756a8c0a0859062b2ee157417d382.png)
при некотором
2. Доказательство.Обозначим
![$$\[
\varsigma _P _{\left( 0 \right)} = \sum\limits_{k = 1}^{\frac{{P - 1}}{3}} {e^{\frac{{2\pi i}}{P}g^{3k} } } ,\varsigma _P _{\left( 1 \right)} = \sum\limits_{k = 1}^{\frac{{P - 1}}{3}} {e^{\frac{{2\pi i}}{P}g^{3k + 1} } } ,\varsigma _P _{\left( 2 \right)} = \sum\limits_{k = 1}^{\frac{{P - 1}}{3}} {e^{\frac{{2\pi i}}{P}g^{3k + 2} } }
\]$ $$\[
\varsigma _P _{\left( 0 \right)} = \sum\limits_{k = 1}^{\frac{{P - 1}}{3}} {e^{\frac{{2\pi i}}{P}g^{3k} } } ,\varsigma _P _{\left( 1 \right)} = \sum\limits_{k = 1}^{\frac{{P - 1}}{3}} {e^{\frac{{2\pi i}}{P}g^{3k + 1} } } ,\varsigma _P _{\left( 2 \right)} = \sum\limits_{k = 1}^{\frac{{P - 1}}{3}} {e^{\frac{{2\pi i}}{P}g^{3k + 2} } }
\]$](https://dxdy-01.korotkov.co.uk/f/4/6/7/4679dd716775f5156ddf3e4faa0b586882.png)
![$$\[
\varsigma _Q _{\left( 0 \right)} = \sum\limits_{k = 1}^{\frac{{Q - 1}}{3}} {e^{\frac{{2\pi i}}{Q}r^{3k} } } ,\varsigma _Q _{\left( 1 \right)} = \sum\limits_{k = 1}^{\frac{{Q - 1}}{3}} {e^{\frac{{2\pi i}}{Q}r^{3k + 1} } } ,\varsigma _Q _{\left( 2 \right)} = \sum\limits_{k = 1}^{\frac{{Q - 1}}{3}} {e^{\frac{{2\pi i}}{Q}r^{3k + 2} } }
\]$ $$\[
\varsigma _Q _{\left( 0 \right)} = \sum\limits_{k = 1}^{\frac{{Q - 1}}{3}} {e^{\frac{{2\pi i}}{Q}r^{3k} } } ,\varsigma _Q _{\left( 1 \right)} = \sum\limits_{k = 1}^{\frac{{Q - 1}}{3}} {e^{\frac{{2\pi i}}{Q}r^{3k + 1} } } ,\varsigma _Q _{\left( 2 \right)} = \sum\limits_{k = 1}^{\frac{{Q - 1}}{3}} {e^{\frac{{2\pi i}}{Q}r^{3k + 2} } }
\]$](https://dxdy-02.korotkov.co.uk/f/9/e/2/9e2163499ed88373e441e7af8572e1db82.png)
![$$\[
\left\{ \begin{array}{l}
\eta _P = \varsigma _P _{\left( 0 \right)} + \varsigma _P _{\left( 1 \right)} \varepsilon + \varsigma _P _{\left( 2 \right)} \varepsilon ^2 \\
\eta _Q = \varsigma _Q _{\left( 0 \right)} + \varsigma _Q _{\left( 1 \right)} \varepsilon + \varsigma _Q _{\left( 2 \right)} \varepsilon ^2 \\
\end{array} \right.
\]$ $$\[
\left\{ \begin{array}{l}
\eta _P = \varsigma _P _{\left( 0 \right)} + \varsigma _P _{\left( 1 \right)} \varepsilon + \varsigma _P _{\left( 2 \right)} \varepsilon ^2 \\
\eta _Q = \varsigma _Q _{\left( 0 \right)} + \varsigma _Q _{\left( 1 \right)} \varepsilon + \varsigma _Q _{\left( 2 \right)} \varepsilon ^2 \\
\end{array} \right.
\]$](https://dxdy-03.korotkov.co.uk/f/e/1/d/e1d456f4380ad1164e085575897b1bce82.png)
2.1. В теме
Представление простого P=3n+1 формой P=A^2-AB+B^2 было получено соотношение
![$$\[
\eta _P ^3 = P\left( {a + b\varepsilon } \right) \to P = \left( {a + b\varepsilon } \right)\left( {a + b\varepsilon ^2 } \right)
\]$ $$\[
\eta _P ^3 = P\left( {a + b\varepsilon } \right) \to P = \left( {a + b\varepsilon } \right)\left( {a + b\varepsilon ^2 } \right)
\]$](https://dxdy-04.korotkov.co.uk/f/f/1/8/f18f96c3b0e0d0312a5aff8f5a50415e82.png)
Аналогично
![$$\[
\eta _Q ^3 = Q\left( {c + d\varepsilon } \right) \to Q = \left( {c + d\varepsilon } \right)\left( {c + d\varepsilon ^2 } \right)
\]$ $$\[
\eta _Q ^3 = Q\left( {c + d\varepsilon } \right) \to Q = \left( {c + d\varepsilon } \right)\left( {c + d\varepsilon ^2 } \right)
\]$](https://dxdy-04.korotkov.co.uk/f/3/8/b/38b5069ebe6ea24e5090f505797cfc9482.png)
Покажем, что

, т.е. они примарные.
![$$\[
\begin{array}{l}
\eta _P ^3 = \left( {\varsigma _P _{\left( 0 \right)} + \varsigma _P _{\left( 1 \right)} \varepsilon + \varsigma _P _{\left( 2 \right)} \varepsilon ^2 } \right)^3 = P\left( {a + b\varepsilon } \right) \equiv a + b\varepsilon \left( {\bmod 3} \right) \\
\left( {\varsigma _P _{\left( 0 \right)} + \varsigma _P _{\left( 1 \right)} \varepsilon + \varsigma _P _{\left( 2 \right)} \varepsilon ^2 } \right)^3 \equiv \varsigma _P _{\left( 0 \right)} ^3 + \varsigma _P _{\left( 1 \right)} ^3 + \varsigma _P _{\left( 2 \right)} ^3 \left( {\bmod 3} \right) \\
\end{array}
\]$ $$\[
\begin{array}{l}
\eta _P ^3 = \left( {\varsigma _P _{\left( 0 \right)} + \varsigma _P _{\left( 1 \right)} \varepsilon + \varsigma _P _{\left( 2 \right)} \varepsilon ^2 } \right)^3 = P\left( {a + b\varepsilon } \right) \equiv a + b\varepsilon \left( {\bmod 3} \right) \\
\left( {\varsigma _P _{\left( 0 \right)} + \varsigma _P _{\left( 1 \right)} \varepsilon + \varsigma _P _{\left( 2 \right)} \varepsilon ^2 } \right)^3 \equiv \varsigma _P _{\left( 0 \right)} ^3 + \varsigma _P _{\left( 1 \right)} ^3 + \varsigma _P _{\left( 2 \right)} ^3 \left( {\bmod 3} \right) \\
\end{array}
\]$](https://dxdy-04.korotkov.co.uk/f/b/8/d/b8d1c31f4270c501e6e8411e63c6d3e082.png)
С точностью до перестановки членов это выражение равно
![$$\[
\varsigma _P _{\left( 0 \right)} + \varsigma _P _{\left( 1 \right)} + \varsigma _P _{\left( 2 \right)}=-1 \equiv - 1\left( {\bmod 3} \right)
\]$ $$\[
\varsigma _P _{\left( 0 \right)} + \varsigma _P _{\left( 1 \right)} + \varsigma _P _{\left( 2 \right)}=-1 \equiv - 1\left( {\bmod 3} \right)
\]$](https://dxdy-03.korotkov.co.uk/f/6/1/a/61a5d4663442c4bc2ee23efc3b00fafe82.png)
Т.о.
![$$\[
\left\{ \begin{array}{l}
a + b\varepsilon \equiv - 1\left( {\bmod 3} \right) \\
c + d\varepsilon \equiv - 1\left( {\bmod 3} \right) \\
\end{array} \right.
\]$ $$\[
\left\{ \begin{array}{l}
a + b\varepsilon \equiv - 1\left( {\bmod 3} \right) \\
c + d\varepsilon \equiv - 1\left( {\bmod 3} \right) \\
\end{array} \right.
\]$](https://dxdy-04.korotkov.co.uk/f/7/b/8/7b8515fca0a6074766f6695e8ddf626982.png)
2.2. Далее. Пусть дано
![$$\[
P \equiv r^{3k + m} \left( {\bmod Q} \right),Q \equiv g^{3t + n} \left( {\bmod P} \right),m,n = 0,1,2
\]$ $$\[
P \equiv r^{3k + m} \left( {\bmod Q} \right),Q \equiv g^{3t + n} \left( {\bmod P} \right),m,n = 0,1,2
\]$](https://dxdy-02.korotkov.co.uk/f/1/c/e/1cee54aa5c3ee318c1ee149e341a67b782.png)
Тогда
![$$\[
\begin{array}{l}
P^{\frac{{Q - 1}}{3}} \equiv \left( {r^{3k + m} } \right)^{\frac{{Q - 1}}{3}} \equiv r^{m\frac{{Q - 1}}{3}} \left( {\bmod Q} \right) \\
Q^{\frac{{P - 1}}{3}} \equiv \left( {g^{3t + n} } \right)^{\frac{{P - 1}}{3}} \equiv g^{n\frac{{P - 1}}{3}} \left( {\bmod P} \right) \\
\end{array}
\]$ $$\[
\begin{array}{l}
P^{\frac{{Q - 1}}{3}} \equiv \left( {r^{3k + m} } \right)^{\frac{{Q - 1}}{3}} \equiv r^{m\frac{{Q - 1}}{3}} \left( {\bmod Q} \right) \\
Q^{\frac{{P - 1}}{3}} \equiv \left( {g^{3t + n} } \right)^{\frac{{P - 1}}{3}} \equiv g^{n\frac{{P - 1}}{3}} \left( {\bmod P} \right) \\
\end{array}
\]$](https://dxdy-03.korotkov.co.uk/f/a/6/d/a6d1824781f3a778a78dc7fa3def603a82.png)
2.3.
![$$\[
\varsigma _P _{\left( 0 \right)} ^Q = \left( {\sum\limits_{k = 1}^{\frac{{P - 1}}{3}} {e^{\frac{{2\pi i}}{P}g^{3k} } } } \right)^Q \equiv \sum\limits_{k = 1}^{\frac{{P - 1}}{3}} {e^{\frac{{2\pi i}}{P}g^{3k} Q} } = \sum\limits_{k = 1}^{\frac{{P - 1}}{3}} {e^{\frac{{2\pi i}}{P}g^{3\left( {k + t} \right) + n} } } \equiv \varsigma _P _{\left( n \right)} \left( {\bmod Q} \right)
\]$ $$\[
\varsigma _P _{\left( 0 \right)} ^Q = \left( {\sum\limits_{k = 1}^{\frac{{P - 1}}{3}} {e^{\frac{{2\pi i}}{P}g^{3k} } } } \right)^Q \equiv \sum\limits_{k = 1}^{\frac{{P - 1}}{3}} {e^{\frac{{2\pi i}}{P}g^{3k} Q} } = \sum\limits_{k = 1}^{\frac{{P - 1}}{3}} {e^{\frac{{2\pi i}}{P}g^{3\left( {k + t} \right) + n} } } \equiv \varsigma _P _{\left( n \right)} \left( {\bmod Q} \right)
\]$](https://dxdy-01.korotkov.co.uk/f/8/d/2/8d2440f0039ba477591ef7710729bbdf82.png)
Аналогично и для других
![$$\[
\varsigma _P _{\left( 1 \right)} ^Q \equiv \varsigma _P _{\left( {n + 1} \right)} \left( {\bmod Q} \right),\varsigma _P _{\left( 2 \right)} ^Q \equiv \varsigma _P _{\left( {n + 2} \right)} \left( {\bmod Q} \right)
\]$ $$\[
\varsigma _P _{\left( 1 \right)} ^Q \equiv \varsigma _P _{\left( {n + 1} \right)} \left( {\bmod Q} \right),\varsigma _P _{\left( 2 \right)} ^Q \equiv \varsigma _P _{\left( {n + 2} \right)} \left( {\bmod Q} \right)
\]$](https://dxdy-02.korotkov.co.uk/f/1/1/2/1126bf107d5295a493654fab43ec70e982.png)
Далее
![$$\[
\begin{array}{l}
\eta _P ^Q = \left( {\varsigma _P _{\left( 0 \right)} + \varsigma _P _{\left( 1 \right)} \varepsilon + \varsigma _P _{\left( 2 \right)} \varepsilon ^2 } \right)^Q \equiv \varsigma _P _{\left( n \right)} + \varsigma _P _{\left( {n + 1} \right)} \varepsilon + \varsigma _P _{\left( {n + 2} \right)} \varepsilon ^2 = \\
= \varepsilon ^{ - n} \left( {\varsigma _P _{\left( 0 \right)} + \varsigma _P _{\left( 1 \right)} \varepsilon + \varsigma _P _{\left( 2 \right)} \varepsilon ^2 } \right) = \varepsilon ^{ - n} \eta _P \left( {\bmod Q} \right) \\
\end{array}
\]$ $$\[
\begin{array}{l}
\eta _P ^Q = \left( {\varsigma _P _{\left( 0 \right)} + \varsigma _P _{\left( 1 \right)} \varepsilon + \varsigma _P _{\left( 2 \right)} \varepsilon ^2 } \right)^Q \equiv \varsigma _P _{\left( n \right)} + \varsigma _P _{\left( {n + 1} \right)} \varepsilon + \varsigma _P _{\left( {n + 2} \right)} \varepsilon ^2 = \\
= \varepsilon ^{ - n} \left( {\varsigma _P _{\left( 0 \right)} + \varsigma _P _{\left( 1 \right)} \varepsilon + \varsigma _P _{\left( 2 \right)} \varepsilon ^2 } \right) = \varepsilon ^{ - n} \eta _P \left( {\bmod Q} \right) \\
\end{array}
\]$](https://dxdy-04.korotkov.co.uk/f/f/1/6/f1608dc1438d24dba7b625869557529c82.png)
Следовательно
![$$\[
\left\{ \begin{array}{l}
\eta _P ^{Q - 1} \equiv \varepsilon ^{ - n} \left( {\bmod Q} \right) \\
\eta _Q ^{P - 1} \equiv \varepsilon ^{ - m} \left( {\bmod P} \right) \\
\end{array} \right.
\]$ $$\[
\left\{ \begin{array}{l}
\eta _P ^{Q - 1} \equiv \varepsilon ^{ - n} \left( {\bmod Q} \right) \\
\eta _Q ^{P - 1} \equiv \varepsilon ^{ - m} \left( {\bmod P} \right) \\
\end{array} \right.
\]$](https://dxdy-01.korotkov.co.uk/f/0/7/f/07f1eca78630bdf51236b4981a7b099e82.png)
2.4.
![$$\[
\left( {a + b\varepsilon } \right)^{\frac{{Q - 1}}{3}} = \left( {\frac{{\eta _P ^3 }}{P}} \right)^{\frac{{Q - 1}}{3}} \equiv \frac{{\varepsilon ^{ - n} }}{{\left( {r^{3k + m} } \right)^{\frac{{Q - 1}}{3}} }} \equiv \varepsilon ^{ - n} r^{ - m\frac{{Q - 1}}{3}} \left( {\bmod Q} \right)
\]$ $$\[
\left( {a + b\varepsilon } \right)^{\frac{{Q - 1}}{3}} = \left( {\frac{{\eta _P ^3 }}{P}} \right)^{\frac{{Q - 1}}{3}} \equiv \frac{{\varepsilon ^{ - n} }}{{\left( {r^{3k + m} } \right)^{\frac{{Q - 1}}{3}} }} \equiv \varepsilon ^{ - n} r^{ - m\frac{{Q - 1}}{3}} \left( {\bmod Q} \right)
\]$](https://dxdy-02.korotkov.co.uk/f/9/1/7/917f6b7ac696239c4c31392719bb2db382.png)
![$$\[
\left( {c + d\varepsilon } \right)^{\frac{{P - 1}}{3}} = \left( {\frac{{\eta _Q ^3 }}{Q}} \right)^{\frac{{P - 1}}{3}} \equiv \frac{{\varepsilon ^{ - m} }}{{\left( {g^{3t + n} } \right)^{\frac{{P - 1}}{3}} }} \equiv \varepsilon ^{ - m} g^{ - n\frac{{P - 1}}{3}} \left( {\bmod P} \right)
\]$ $$\[
\left( {c + d\varepsilon } \right)^{\frac{{P - 1}}{3}} = \left( {\frac{{\eta _Q ^3 }}{Q}} \right)^{\frac{{P - 1}}{3}} \equiv \frac{{\varepsilon ^{ - m} }}{{\left( {g^{3t + n} } \right)^{\frac{{P - 1}}{3}} }} \equiv \varepsilon ^{ - m} g^{ - n\frac{{P - 1}}{3}} \left( {\bmod P} \right)
\]$](https://dxdy-01.korotkov.co.uk/f/0/0/2/0020c8a08a985977e228b2c2b53db59582.png)
Или
![$$\[
\left( {a + b\varepsilon } \right)^{\frac{{Q - 1}}{3}} r^{m\frac{{Q - 1}}{3}} \varepsilon ^n \equiv 1\left( {\bmod Q} \right)
\]$ $$\[
\left( {a + b\varepsilon } \right)^{\frac{{Q - 1}}{3}} r^{m\frac{{Q - 1}}{3}} \varepsilon ^n \equiv 1\left( {\bmod Q} \right)
\]$](https://dxdy-02.korotkov.co.uk/f/1/c/0/1c0489601bf4c2d2c6690c8a981e621982.png)
![$$\[
\left( {c + d\varepsilon } \right)^{\frac{{P - 1}}{3}} g^{n\frac{{P - 1}}{3}} \varepsilon ^m \equiv 1\left( {\bmod P} \right)
\]$ $$\[
\left( {c + d\varepsilon } \right)^{\frac{{P - 1}}{3}} g^{n\frac{{P - 1}}{3}} \varepsilon ^m \equiv 1\left( {\bmod P} \right)
\]$](https://dxdy-02.korotkov.co.uk/f/1/4/c/14cc873244571d9eccb32f2e3f42ff9c82.png)
2.5. Обратимся к соотношению
![$$\[
\left( {a + b\varepsilon } \right)^{\frac{{Q - 1}}{3}} r^{m\frac{{Q - 1}}{3}} \varepsilon ^n -1 \equiv 0\left( {\bmod Q} \right)
\]$ $$\[
\left( {a + b\varepsilon } \right)^{\frac{{Q - 1}}{3}} r^{m\frac{{Q - 1}}{3}} \varepsilon ^n -1 \equiv 0\left( {\bmod Q} \right)
\]$](https://dxdy-03.korotkov.co.uk/f/a/6/0/a60ab05250ba39f4a9ac73c072b76ac382.png)
и рассмотрим тождество, полученное делением с остатком на многочлен

![$$\[
\left( {a + bx} \right)^{\frac{{Q - 1}}{3}} r^{m\frac{{Q - 1}}{3}} x^n - 1 = \left( {x^2 + x + 1} \right)\varphi \left( x \right) + \left( {kx + t} \right)
\]$ $$\[
\left( {a + bx} \right)^{\frac{{Q - 1}}{3}} r^{m\frac{{Q - 1}}{3}} x^n - 1 = \left( {x^2 + x + 1} \right)\varphi \left( x \right) + \left( {kx + t} \right)
\]$](https://dxdy-04.korotkov.co.uk/f/f/9/f/f9f55c44baeef128b9c1d13f7b24d10f82.png)
При

получим
![$$\[
\left( {a + b\varepsilon } \right)^{\frac{{Q - 1}}{3}} r^{m\frac{{Q - 1}}{3}} \varepsilon ^n - 1 = k\varepsilon + t
\]$ $$\[
\left( {a + b\varepsilon } \right)^{\frac{{Q - 1}}{3}} r^{m\frac{{Q - 1}}{3}} \varepsilon ^n - 1 = k\varepsilon + t
\]$](https://dxdy-03.korotkov.co.uk/f/e/8/3/e8396771c39cade0d7272af31fb7edf382.png)
Следовательно,

делятся на

Теперь, подставив в тождество

, получим
![$$\[
\left( {a + br^{\frac{{Q - 1}}{3}} } \right)^{\frac{{Q - 1}}{3}} r^{m\frac{{Q - 1}}{3}} r^{n\frac{{Q - 1}}{3}} - 1 = \left( {r^{2\frac{{Q - 1}}{3}} + r^{\frac{{Q - 1}}{3}} + 1} \right)\varphi \left( {r^{\frac{{Q - 1}}{3}} } \right) + Qh
\]$ $$\[
\left( {a + br^{\frac{{Q - 1}}{3}} } \right)^{\frac{{Q - 1}}{3}} r^{m\frac{{Q - 1}}{3}} r^{n\frac{{Q - 1}}{3}} - 1 = \left( {r^{2\frac{{Q - 1}}{3}} + r^{\frac{{Q - 1}}{3}} + 1} \right)\varphi \left( {r^{\frac{{Q - 1}}{3}} } \right) + Qh
\]$](https://dxdy-02.korotkov.co.uk/f/1/d/b/1dbc6b67fd3f04fdc260c129bd26fd7f82.png)
Выражение в скобках правой части делится на

. Получим окончательно
![$$\[
\left( {a + br^{\frac{{Q - 1}}{3}} } \right)^{\frac{{Q - 1}}{3}} \equiv r^{ - \frac{{Q - 1}}{3}\left( {m + n} \right)} \left( {\bmod Q} \right)
\]$ $$\[
\left( {a + br^{\frac{{Q - 1}}{3}} } \right)^{\frac{{Q - 1}}{3}} \equiv r^{ - \frac{{Q - 1}}{3}\left( {m + n} \right)} \left( {\bmod Q} \right)
\]$](https://dxdy-04.korotkov.co.uk/f/3/d/f/3df9728889e7a7ba9b3535c03198783682.png)
Аналогично
![$$\[
\left( {c + dg^{\frac{{P - 1}}{3}} } \right)^{\frac{{P - 1}}{3}} \equiv g^{ - \frac{{P - 1}}{3}\left( {m + n} \right)} \left( {\bmod P} \right)
\]$ $$\[
\left( {c + dg^{\frac{{P - 1}}{3}} } \right)^{\frac{{P - 1}}{3}} \equiv g^{ - \frac{{P - 1}}{3}\left( {m + n} \right)} \left( {\bmod P} \right)
\]$](https://dxdy-02.korotkov.co.uk/f/9/b/d/9bd9f300adca7ea15544b6982403180982.png)
Так как
![$$\[
s = r^{\frac{{Q - 1}}{3}} P^{Q - 1} + g^{\frac{{P - 1}}{3}} Q^{P - 1} \equiv r^{\frac{{Q - 1}}{3}} \left( {\bmod Q} \right) \equiv g^{\frac{{P - 1}}{3}} \left( {\bmod P} \right)
\]$ $$\[
s = r^{\frac{{Q - 1}}{3}} P^{Q - 1} + g^{\frac{{P - 1}}{3}} Q^{P - 1} \equiv r^{\frac{{Q - 1}}{3}} \left( {\bmod Q} \right) \equiv g^{\frac{{P - 1}}{3}} \left( {\bmod P} \right)
\]$](https://dxdy-04.korotkov.co.uk/f/f/a/4/fa417105359e7178f4e150e986b504d982.png)
то окончательно получим
![$$\[
\left\{ \begin{array}{l}
\left( {a + bs} \right)^{\frac{{Q - 1}}{3}} \equiv s^k \left( {\bmod Q} \right) \\
\left( {c + ds} \right)^{\frac{{P - 1}}{3}} \equiv s^k \left( {\bmod P} \right) \\
\end{array} \right.
\]$ $$\[
\left\{ \begin{array}{l}
\left( {a + bs} \right)^{\frac{{Q - 1}}{3}} \equiv s^k \left( {\bmod Q} \right) \\
\left( {c + ds} \right)^{\frac{{P - 1}}{3}} \equiv s^k \left( {\bmod P} \right) \\
\end{array} \right.
\]$](https://dxdy-02.korotkov.co.uk/f/5/c/0/5c0521a818162b7cd725abfb96f6b94c82.png)
при некотором
