2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Непонятные тройные произведения
Сообщение05.04.2015, 10:48 
Аватара пользователя
$(\bar{p}\times\bar{q})^2=((\bar{a}\times\bar{b})\times(\bar{a}\times\bar{c}))^2$
Да, хорошо. Но дальше — лучше без углов, а используя алгебраические свойства векторного произведения. Вы наверняка знаете формулу «бац минус цаб». В нашем случае роль $\bar A$ пусть играет $\bar{a}\times\bar{b}$, далее $\bar B=\bar a$ и $\bar C=\bar c$.
Попробуйте раскрыть по бацминусцабу $(\bar{a}\times\bar{b})\times(\bar{a}\times\bar{c})$, не забывая, что результат потом ещё надо будет возвести в квадрат.

 
 
 
 Re: Непонятные тройные произведения
Сообщение05.04.2015, 12:51 
svv в сообщении #1000390 писал(а):
«бац минус цаб»

Вы об этом: $\bar{b}\bar{a}\bar{c}=-\bar{c}\bar{a}\bar{b}$?
Далее: $\left(\bar{A}\times\left(\bar{B}\times\bar{C}\right)\right)^2$. Хоть убейте, но ничего умнее (тупикового) раскрытия "через углы" не могу придумать. Свойства прям перед глазами (тот самый Письменный). Вот скажите, тут верно: $\bar{a}^{2}(\bar{a}\bar{b}\bar{c})^{2}=((\bar{a}\times\bar{b})\cdot(\bar{a}\bar{c}))^2$?

 
 
 
 Re: Непонятные тройные произведения
Сообщение05.04.2015, 13:08 
sumb в сообщении #1000444 писал(а):
Вы об этом: $\bar{b}\bar{a}\bar{c}=-\bar{c}\bar{a}\bar{b}$?

Нет, имелась в виду стандартная формула: $\vec A\times\left(\vec B\times\vec C\right)=\vec B\left(\vec A\vec C\right)-\vec C\left(\vec A\vec B\right)$.

 
 
 
 Re: Непонятные тройные произведения
Сообщение05.04.2015, 13:17 
Аватара пользователя
ewert, а какое для Вас самое родное и привычное (возможно, это разные вещи?) обозначение скалярного произведения? Не индуцированное, так сказать, нотацией топикстартеров.

 
 
 
 Re: Непонятные тройные произведения
Сообщение05.04.2015, 13:33 
Нотация ТС тоже вполне стандартна (скажем, для физиков), но крайне неудобна. А нормальные люди используют для скалярного и смешанного произведения или точку, или запятые. Я лично в рамках курса векторной алгебры и аналитической геометрии предпочитаю точку, чтобы "не плодить сущностей без необходимости". И уж, разумеется, никогда не возвожу в квадрат векторы -- только их модули.

 
 
 
 Re: Непонятные тройные произведения
Сообщение05.04.2015, 21:07 
Аватара пользователя
svv
Предпочтения носят ещё национальный характер. Например, в России предпочитают скобочки, а в Америке - точки и крестики. Насчёт Европы - там есть свои традиции, в каждой стране свои, можно просто по Википедии посмотреть, довольно интересно.

 
 
 
 Re: Непонятные тройные произведения
Сообщение05.04.2015, 21:14 
Аватара пользователя
Кстати, использование скобок для скалярного произведения иногда даже уменьшает общее количество скобок. Сравните $(\mathbf a+\mathbf b)\cdot (\mathbf a-\mathbf b)$ и $(\mathbf a+\mathbf b,\;\mathbf a-\mathbf b)$.

 
 
 
 Re: Непонятные тройные произведения
Сообщение05.04.2015, 21:27 
svv в сообщении #1000668 писал(а):
Сравните $(\mathbf a+\mathbf b)\cdot (\mathbf a-\mathbf b)$ и $(\mathbf a+\mathbf b,\;\mathbf a-\mathbf b)$.

Тут сравнивать смысла нет -- при любом варианте экономия по сравнению с остальными будет несущественной (я так уверенно говорю потому, что время от времени генерирую ТеХовские ответы к индивидуальным заданиям, пытаясь вывести ответ в максимально компактной форме, причём в целом по вариантам, так что есть опыт сравнений).

А вот что более любопытно -- откуда вообще появилась традиция заменять точечку на запятую со скобочками. Скорее всего, потому, что последнее произошло от $f(\cdot,\cdot)$, в котором эф редуцировалась ввиду её стандартности.

 
 
 
 Re: Непонятные тройные произведения
Сообщение05.04.2015, 22:25 
Аватара пользователя
Говорят, такие обозначения пошли от Дирака. А вот точечки и крестики - от Гиббса, обозначения которого популяризовал Хевисайд. Это ещё 19-й век, конец. А до них были вообще "кватернионные" обозначения: $\mathrm{S}ab$ для скалярного и $\mathrm{V}ab$ - для векторного произведений (иногда с точкой после $\mathrm{S,V},$ иногда без). Кстати, $\mathrm{S,V}$ могли употребляться со скобками, так что отсюда по предположению ewert
    ewert в сообщении #1000674 писал(а):
    произошло от $f(\cdot,\cdot)$, в котором эф редуцировалась ввиду её стандартности.
могли возникнуть и скобочные обозначения.

А, вот, нашёл: обозначения $(\mathfrak{A,B})$ и $[\mathfrak{A,B}]$ использовал Richard Gans в 1905 году.

http://rghost.ru/6zM7VGNDZ
Tai C. T. A Historical Study of Vector Analysis. Technical Report. 1995.
http://rghost.ru/82BQKJt2Q
Crowe M. J. A History of Vector Analysis. Talk based on the book. 2002.

 
 
 
 Re: Непонятные тройные произведения
Сообщение06.04.2015, 18:32 
Доказательство справедливости тождества 3 с учётом замечаний и формул Svv.

3) $(\overline{a}\times\overline{b})^{2}(\overline{a}\times\overline{c})^{2}-((\overline{a}\times\overline{b})\cdot(\overline{a}\times\overline{c}))^{2}=\overline{a}^{2}(\overline{a}\overline{b}\overline{c})^{2}$

$((\bar{a}\times \bar{b})\times(\bar{c}\times \bar{d}) )^2=a^2(\bar{a}\bar{b}\bar{c})^2$
$(\bar{a}\times \bar{b})\times(\bar{a}\times \bar{c}) =(\bar{a}\bar{a}\bar{c})\bar{b}-(\bar{b}\bar{a}\bar{c})\bar{a}=(\bar{c}\bar{a}\bar{a})\bar{b}-(\bar{a}\bar{c}\bar{b})\bar{a}=\bar{c}(\bar{a}\times \bar{a})\bar{b}-\bar{a}(\bar{c}\times \bar{b})\bar{a}=\bar{a}\bar{a}(\bar{b}\times \bar{c})=\bar{a}(\bar{a}\bar{b}\bar{c})$

Возведём полученное выражение в квадрат. И учитывая, что смешанное произведение есть скаляр, получим:
$(\bar{a}(\bar{a}\bar{b}\bar{c}))^2=a^2(\bar{a}\bar{b}\bar{c})^2$
Итак, тождество 3 справедливо.

Инженер Иван Горин.

 
 
 
 Re: Непонятные тройные произведения
Сообщение06.04.2015, 18:39 
Аватара пользователя
Спасибо! :-)
Тема обрела завершенность.

(Оффтоп)

ludwig51 в сообщении #1000918 писал(а):
$(\bar{a}\times \bar{b})\times(\bar{a}\times \bar{c}) =(\bar{a}\bar{a}\bar{c})\bar{b}-(\bar{b}\bar{a}\bar{c})\bar{a}$
Мне кажется, у Вас здесь уже в руках был ответ. Первое слагаемое равно нулю (в смешанном два одинаковых вектора), во втором только переставить векторы местами.

 
 
 
 Re: Непонятные тройные произведения
Сообщение06.04.2015, 19:54 
svv в сообщении #1000921 писал(а):
Спасибо! :-)
Тема обрела завершенность.

(Оффтоп)

ludwig51 в сообщении #1000918 писал(а):
$(\bar{a}\times \bar{b})\times(\bar{a}\times \bar{c}) =(\bar{a}\bar{a}\bar{c})\bar{b}-(\bar{b}\bar{a}\bar{c})\bar{a}$
Мне кажется, у Вас здесь уже в руках был ответ. Первое слагаемое равно нулю (в смешанном два одинаковых вектора), во втором только переставить векторы местами.

Ваши замечания верные.
Я расписал более подробно, чтобы не возникали дополнительные вопросы.
И тем не менее я постарался сделать доказательство, как можно короче. Не приводя теории.
И из моих преобразований виден циклический сдвиг в смешанных произведениях. И сдвиг вправо или влево не влияет на знак.

Но ещё не доказано последнее тождество.
Но по правилам начать разработку должен автор темы.

 
 
 
 Re: Непонятные тройные произведения
Сообщение06.04.2015, 22:33 
ludwig51 в сообщении #1000939 писал(а):
Но ещё не доказано последнее тождество.

А разве его здесь кто-нибудь понял?...

Я все три странички внимательно не читал, но формально говоря -- понять его невозможно. Как точки ни интерпретируй, и как дополнительные скобки (если уж совсем захочется) ни расставляй -- всё равно бред получится.

 
 
 
 Re: Непонятные тройные произведения
Сообщение06.04.2015, 22:49 
Аватара пользователя
ludwig51 в сообщении #1000939 писал(а):
Но по правилам начать разработку должен автор темы.

Во-первых, такого правила нет, а во-вторых, автор темы в ней уже год не появляется.

 
 
 
 Re: Непонятные тройные произведения
Сообщение06.04.2015, 23:51 
Аватара пользователя
ludwig51
Так что, попросим автора доказать четвёртое тождество, или пусть наслаждается жизнью?

 
 
 [ Сообщений: 63 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group