Приветствую. Вопрос: Является множество всех целых чисел полем?
Ответ: нет. Каждому ненулевому скаляру

отвечает однозначно определённый скаляр

(или

) такой, что

. Но на множестве целых чисел отсутствует элемент типа

, где

целое число, отличное от нуля. Например,

не является целым числом.
Не понимаю почему кольцо вычетов по модулю простого числа является полем. Например,

. Здесь для элемента

множества отсутствует элемент

. Он даже не входит в множество целых чисел. Потом отсутствует элемент

, т.к. множество состоит только из трех элементов. Видимо не понимаю какие-то свойства полей, помогите разобраться.