2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Решение систем полиномиальных уравнений
Сообщение23.03.2014, 04:14 
Дана система уравнений довольно большой размерности, тысячи уравнений в ней, соответственно, столько же переменных.
Все уравнения - четвертой степени (на самом деле, только одна переменная входит с третьей и четвертой степенью в половину уравнений, все остальные - максимум второй степени).
Есть ли какой-нибудь хороший способ решения таких систем?
Базисы Грёбнера будут строиться бесконечно долго для такой размерности, стандартные численные методы даже быстро не сработают.
Может быть, стоит сводить такую задачу к минимизации функционала, равного сумме квадратов полиномов?

 
 
 
 Re: Решение систем полиномиальных уравнений
Сообщение23.03.2014, 08:17 
Аватара пользователя
Как вариант - ввести новые переменные, соответствующие степеням исходных и ограничения - равенство новых переменных степеням исходных.
$x_{i^{''}}=x_i^2$
$x_{i^{'''}}=x_i^3$
$x_{i^{''''}}=x_i^4$
Затем минимизировать сумму невязок с учётом ограничений (мне кажется, Лагранж как раз для этого).
Если есть хорошие приближения - можно вообще линеаризовать (скорее по Чебышеву, чем по Тейлору, с учётом ожидаемой погрешности приближения) степени и решать линейную задачу.

 
 
 [ Сообщений: 2 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group