2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Вектан
Сообщение12.03.2014, 16:33 
Аватара пользователя
Oleg Zubelevich в сообщении #835061 писал(а):
интересно, а верна ли эта формула в случае неевклидовой метрики?

Oleg Zubelevich в сообщении #835276 писал(а):
Munin в сообщении #835266 писал(а):
Нет, это операторы "звёздочка Ходжа".


нет, это не яйцо, это яйцо в профиль :mrgreen:


Формула верна и в профиль.

Обозначим через $\operatorname{grad}$, $\operatorname{rot}$ и $\operatorname{div}$ морфизмы, индуцированные изоморфизмами на следующей коммутативной диаграмме из точных последовательностей
$$\xymatrix{
 & 0 & 0 & 0 & 0 & \\
0\ar[r] & \wedge^0\ar[r]^d \ar[u] & \wedge^1\ar[r]^d \ar[u] & \wedge^2\ar[r]^d \ar[u] & \wedge^3\ar[r] \ar[u] & 0\\
0\ar[r] & \wedge^0\ar[r]^{\operatorname{grad}} \ar[u]^{\operatorname{id}} & TM\ar[r]^{\operatorname{rot}} \ar[u]^\flat & TM\ar[r]^{\operatorname{div}} \ar[u]^\ast & \wedge^0\ar[r] \ar[u]^\star & 0\\
 & 0\ar[u] & 0\ar[u] & 0\ar[u] & 0\ar[u] & 
}$$

где задействованы следующие изоморфизмы: $\ast$ — звезда Ходжа, действующая из $TM$ в $\wedge^2$ по правилу $\ast\colon X\mapsto i_X\Omega$, где $\Omega$ — это форма объёма, индуцированная метрикой (хотя, эту операцию можно и без метрики определить), $\star$ — звезда Ходжа на $\wedge^k$, $\flat$ — оператор "опускания индекса" $\flat(X)\equiv X^\flat = i_X g$, где g — метрика (обратный оператор $\#(\theta)\equiv\theta^\#$, $\theta\in\wedge^1$). Полезно заметить, что $\ast = \star\circ\flat$.

На трёхмерном римановом многообразии $\star^{-1}=\star$ и $\ast^{-1}=\#\circ\star$.

Тогда в инвариантном виде имеем
$$\operatorname{grad} = \#\circ d = \#d$$
$$\operatorname{rot} = \#\circ\star\circ d\circ\flat = \ast^{-1} d\flat$$
$$\operatorname{div} = \star\circ d\circ\star\circ\flat = \star d\ast$$
в последних частях равенств знак композиции опущен как подразумевающийся.

Нам понадобится ещё инвариантное определение векторного произведения, которое тоже работает в любом трёхмерном римановом многообразии.
$$[XY] = \ast^{-1}(X^\flat\wedge Y^\flat)$$
Векторное произведение будем обозначать $[XY]$ в противовес коммутатору $[X,Y]$.

Нам ещё понадобится
$$\mathscr{L}_X = i_X d + di_X$$
$$[\mathscr{L}_X,i_Y] = i_{[X,Y]}$$
$$i_X(\omega\wedge\theta) = (i_X\omega)\wedge\theta + (-1)^k\omega\wedge i_X\theta\;\;\text{для \ensuremath{k}-формы \ensuremath{\omega}}$$
$$\star(X^\flat\wedge Y^\flat) = i_Y i_X\Omega$$

Последнее равенство можно доказать, например, так. По определению форма $\star\theta$, двойственная $k$-форме $\theta$, — это такая единственная форма, что $\forall\omega\in\wedge^k\;\;\omega\wedge\star\theta = (\omega,\theta)\Omega$. Например для $\theta=X^\flat\wedge Y^\flat$ имеем $\forall\omega\in\wedge^2$
$$\omega\wedge\star(X^\flat\wedge Y^\flat)=(\omega,X^\flat\wedge Y^\flat)\Omega=\omega(X,Y)\Omega$$
С другой стороны
$$\omega\wedge i_Y i_X\Omega = i_Y(\omega\wedge i_X\Omega) - (i_Y\omega)\wedge i_X\Omega=
i_X(i_Y\omega\wedge\Omega) - (i_X i_Y\omega)\Omega = \omega(X,Y)\Omega$$

Имеея всё это в виду, докажем справедливость утверждения для произвольного риманова пространства.

$$\operatorname{rot}[XY]=\ast^{-1}d\star(X^\flat\wedge Y^\flat)=\ast^{-1}d i_Y i_X\Omega=
\ast^{-1}\mathscr{L}_Y i_X\Omega - \ast^{-1}i_Y d i_X\Omega =$$
$$=\ast^{-1} i_{[Y,X]}\Omega + \ast^{-1}i_X\mathcsr{L}_Y\Omega - \ast^{-1}i_Y\star\star d\ast X=
\ast^{-1}i_X i_Y d\Omega + \ast^{-1}i_X d i_Y\Omega - (\operatorname{div}X)Y - [X,Y]=$$
$$=(\operatorname{div}Y)X - (\operatorname{div}X)Y - [X,Y]$$

Что и требовалось доказать. Заодно по пути мы почти доказали для любого $X\in TM$ коммутативность следующей диаграммы из точных последовательностей
$$\xymatrix{
0 & 0 & 0 & 0\\
\wedge^0\ar[r]^{e_{X^\flat}} \ar[u] & \wedge^1\ar[r]^{e_{X^\flat}} \ar[u] & \wedge^2\ar[r]^{e_{X^\flat}} \ar[u] & \wedge^3 \ar[u]\\
\wedge^3\ar[r]^{i_X} \ar[u]^{\star_3} & \wedge^2\ar[r]^{-i_X} \ar[u]^{\star_2} & \wedge^1\ar[r]^{i_X} \ar[u]^{\star_1} & \wedge^0 \ar[u]^{\star_0}\\
0\ar[u] & 0\ar[u] & 0\ar[u] & 0\ar[u]
}$$
где $e_{X^\flat}\bullet \equiv X^\flat\wedge\bullet$.

Мы уже доказали
$\star_2\circ e_{X^\flat} = -i_X\circ\star_1$
$e_{X^\flat}\circ\star_2 = -\star_1\circ i_X$.

Равенство остальных композиций доказывается элементарно. $\star_1\circ e_{X^\flat} = i_X\Omega = i_X\circ\star_0$, что влечёт
$\star_1\circ e_{X^\flat} = i_X\circ\star_0$
$e_{X^\flat}\circ\star_3 = \star_2\circ i_X$.

Из $X^\flat\wedge\star Y^\flat = X^\flat\wedge i_Y\Omega = (i_Y X^\flat)\Omega - i_Y(X^\flat\wedge\Omega) = (X,Y)\Omega$ и $\star i_X Y^\flat = \star i_X i_Y g = \star(X,Y) = (X,Y)\Omega$ следует
$\star_3\circ e_{X^\flat} = i_X\circ\star_2$
$e_{X^\flat}\circ\star_1 = \star_0\circ i_X$.

Выглядит как некоторый осколок чего-то более красивого и обобщаемого на любые размерности, но что это значит, я не знаю. Зато мы бонусом получили доказательство "БАЦ минус ЦАБ" для произвольного трёхмерного Риманова многообразия
$$[A[BC]] = \ast^{-1}(A^\flat\wedge\star(B^\flat\wedge C^\flat)) = -\#i_A(B^\flat\wedge C^\flat) = (A,C)B - (A,B)C$$

 
 
 
 Re: Вектан
Сообщение12.03.2014, 16:59 
по-моему это образцовый пример горя от ума.

ответ на вопрос уже дан:
svv в сообщении #835234 писал(а):
Верна. Вот в таком виде, например:$$E^{ik\ell}\nabla_k(E_{\ell mn}a^m b^n)=a^i\;\nabla_k b^k-b^i\;\nabla_k a^k+b^k\;\nabla_k a^i-a^k\;\nabla_k b^i$$



я просто поленился расписать формулы в координатах, а svv не поленился. Спасибо ему.

 
 
 
 Re: Вектан
Сообщение12.03.2014, 17:02 
Аватара пользователя
Это вдохновляет. Это восхитительно прекрасно.

 
 
 
 Re: Вектан
Сообщение12.03.2014, 17:30 
Аватара пользователя
olenellus в сообщении #835928 писал(а):
Заодно по пути мы почти доказали для любого $X\in TM$ коммутативность следующей диаграммы из точных последовательностей
$$\xymatrix{
0 & 0 & 0 & 0\\
\wedge^0\ar[r]^{e_{X^\flat}} \ar[u] & \wedge^1\ar[r]^{e_{X^\flat}} \ar[u] & \wedge^2\ar[r]^{e_{X^\flat}} \ar[u] & \wedge^3 \ar[u]\\
\wedge^3\ar[r]^{i_X} \ar[u]^{\star_3} & \wedge^2\ar[r]^{-i_X} \ar[u]^{\star_2} & \wedge^1\ar[r]^{i_X} \ar[u]^{\star_1} & \wedge^0 \ar[u]^{\star_0}\\
0\ar[u] & 0\ar[u] & 0\ar[u] & 0\ar[u]
}$$

Как будет выглядеть такая диаграмма не для $\wedge^0\ldots\wedge^3,$ а для $\wedge^k\ldots\wedge^{k+3},$ или даже для $\wedge^k\ldots\wedge^n$?

 
 
 
 Re: Вектан
Сообщение12.03.2014, 17:37 
Аватара пользователя
Пока не знаю. Надо думать. Скорее всего, это что-то давно известное (в узких кругах).

-- Ср мар 12, 2014 16:59:31 --

olenellus в сообщении #835928 писал(а):
на следующей коммутативной диаграмме из точных последовательностей

Да, это я спохватился. Последовательности по горизонтали полуточные, а по вертикали — точные.

 
 
 
 Re: Вектан
Сообщение12.03.2014, 20:47 
Аватара пользователя
olenellus
Вы замечали, что русскоязычные авторы чаще звездочкой Ходжа считают $\ast$ ($p$-поливекторы в $n-p$-формы и наоборот), а англоязычные $\star$ (формы в формы)? Интересно, почему? Какое определение Вы считаете более фундаментальным?

 
 
 
 Re: Вектан
Сообщение12.03.2014, 21:41 
Аватара пользователя
Это вопрос точно не ко мне. Я тут дилетант. Что касается отличий, то для определения $\ast$ достаточно наличия любой $n$-формы, которую можно взять за форму объёма. Для определения $\star$ нужна уже метрическая форма. Поэтому $\ast$ — это всё-таки более общая конструкция.

 
 
 
 Re: Вектан
Сообщение12.03.2014, 22:09 
Аватара пользователя
Я подозреваю, здесь есть ещё и полиграфические различия: в русскоязычной типографии чаще используется звёздочка $\ast,$ а в англоязычной - $\star.$ И сравнительно немногие авторы вводят оба оператора, и обозначают их при этом разными звёздочками.

Пятиконечная звёздочка может избегаться в русскоязычном пространстве по традиции - в СССР она ассоциировалась с политическим символом.

 
 
 
 Re: Вектан
Сообщение12.03.2014, 23:09 
Аватара пользователя
olenellus
Почему-то напомнило...
Изображение

 
 
 
 Re: Вектан
Сообщение13.03.2014, 00:15 
Аватара пользователя
Утундрий, в физ.-мат. юмор это не помещали? Так и просится!

 
 
 [ Сообщений: 25 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group