2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Корень кубический и ^(1/3)
Сообщение29.01.2014, 21:18 
Добрый вечер! Возник такой спор: очевидно, что верно $\sqrt[3]{-8}=-2$, но существует ли число: $(-8)^{1/3}$ Мнения разделились: одни говорят, что это будет комплексное число, другие говорят, что это $-2$. Спрашивали преподавателей - один говорит, что договоренность такая, что область определение у этих операций не совпадает. Другой говорит, что всю жизнь считал, что $(-8)^{1/3}=2$. Обращались к разным математическим программам: одни строят график для степени только для неотрицательных иксов, другие пишут, что мы ввели корень кубический из икса и строят графики уже для корня... Еще какая-то программа говорила, что число $\sqrt[3]{-1}$ как комплексное, так и вещественное... Вообщем говоря, какие корни имеет уравнение $x=(-8)^{1/3}$? Конечно, это вопрос договоренности, но тем не менее, интересуют, какие же это договоренности) Рассудите нас, пожалуйста!

 
 
 
 Re: Корень кубический и ^(1/3)
Сообщение29.01.2014, 21:24 
школьные учебники пробовали открывать?

 
 
 
 Re: Корень кубический и ^(1/3)
Сообщение29.01.2014, 23:44 
Изображение


Вавилов В.В., Мельников И.И., Олехник С.Н., Пасиченко П.И.Задачи по математике. Начала анализа. Справочное пособие.. - М.: Наука. Гл. ред. физ.мат.лит. 1990. - 608 с.

стр.182.

Хотя, тут как-то странно, сразу в условии написано, что $x \in [0;+ \infty)$

 
 
 
 Re: Корень кубический и ^(1/3)
Сообщение29.01.2014, 23:57 
Аватара пользователя
Limit79 в сообщении #820552 писал(а):
Хотя, тут как-то странно, сразу в условии написано, что $x \in [0;+ \infty)$

И это правильно.

 
 
 
 Re: Корень кубический и ^(1/3)
Сообщение30.01.2014, 00:14 
Это все уважаемые люди (не все уже и живы), но
Himki, вы понимаете слово учебник, что оно значит?

 
 
 
 Re: Корень кубический и ^(1/3)
Сообщение01.02.2014, 01:09 
Да, мои собеседники согласились со школьным учебником Морковича - 10-11 класс, базовый уровень. Я думал, что школьный учебник они отвергнут сразу, потому что википедии они не поверили :-(, поэтому даже не догадался им показать учебник.. Хотя для меня, правда, стало удивлением, что учебник оказался сильнее википедии..

 
 
 
 Re: Корень кубический и ^(1/3)
Сообщение01.02.2014, 07:02 
$x^{\alpha}$ и $x^{1/3}$ -- это две большие разницы. В первом случае иксы обязательно положительны просто потому, что альфы произвольны. Во втором же побуквоедствовать при желании тоже можно, конечно, однако за пределами школьных учебников $x^{1/3}$ и $\sqrt[3]{x}$ обычно употребляются как синонимы, т.к. корень рисовать иногда не очень удобно.

 
 
 
 Re: Корень кубический и ^(1/3)
Сообщение01.02.2014, 07:17 
Аватара пользователя
Himki в сообщении #821324 писал(а):
Хотя для меня, правда, стало удивлением, что учебник оказался сильнее википедии..

:shock:

 
 
 
 Re: Корень кубический и ^(1/3)
Сообщение01.02.2014, 12:45 
Все же, наверное, если пишем в степенной форме, то надо основание брать положительным.
Иначе возникает вопрос: чему равно $(-8)^{2/6}$?

 
 
 
 Re: Корень кубический и ^(1/3)
Сообщение01.02.2014, 13:29 

(Оффтоп)

Himki в сообщении #821324 писал(а):
Хотя для меня, правда, стало удивлением, что учебник оказался сильнее википедии

Имхо, разумеется, что учебник -- более сильный аргумент, чем википедия, ибо учебники пишут более компетентные люди.

 
 
 
 Re: Корень кубический и ^(1/3)
Сообщение01.02.2014, 14:31 
Limit79 в сообщении #821427 писал(а):
учебник -- более сильный аргумент, чем википедия, ибо учебники пишут более компетентные люди
ну это смотря какой учебник. когда более, а когда и менее компетентные :-)

 
 
 
 Re: Корень кубический и ^(1/3)
Сообщение01.02.2014, 14:37 
Аватара пользователя
BVR
А здесь смысл примерно такой же, как вот в чем: какова область определения функции $\frac{1}{\frac{1}{x}}$

 
 
 
 Re: Корень кубический и ^(1/3)
Сообщение01.02.2014, 15:05 
Но учебник школьный и собеседники вполне могли сослаться на то, что в школе много чего не рассказывается и тд

 
 
 
 Re: Корень кубический и ^(1/3)
Сообщение01.02.2014, 15:46 
Аватара пользователя
Himki в сообщении #821442 писал(а):
Но учебник школьный и собеседники вполне могли сослаться на то, что в школе много чего не рассказывается и тд

Может не совсем понял смысл претензии...

А учебник что - виноват, "что в школе много чего не рассказывается"?
А вы сами что - не в состоянии самостоятельно осилить учебник?
Что касается Википедии - ей верить можно лишь тогда, когда сможешь сам проверить истинность там написанного
и отделить зерна от плевел, которых там достаточно. Т.е. это напоминалка, не более.
Поэтому нужно освоить учебник. В первую очередь. Чтобы не молиться на Вику, а быть с ней на "ты".

 
 
 
 Re: Корень кубический и ^(1/3)
Сообщение01.02.2014, 16:08 
miflin в сообщении #821447 писал(а):
А учебник что - виноват, "что в школе много чего не рассказывается"?

А я разве винил в чем-то учебник? Он, конечно, не виноват, но разве мы ищем виноватых?

miflin в сообщении #821447 писал(а):
А вы сами что - не в состоянии самостоятельно осилить учебник?
А это тут вообще при чем? Заметьте, я говорил только о том, что учебник мог не решить нашего спора

 
 
 [ Сообщений: 26 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group