Чаще всего техника символьного интегрирования (отыскания первообразной) применяется лишь на промежутках непрерывности, однако всем известно, что из непрерывности функции ещё не следует её дифференцируемость, например функция:
Разрывна в нуле, однако имеет первообразную
(естественно доопределенную в нуле по непрерывности). Так вот, есть ли какие-нибудь необходимые/достаточные признаки того, что данная разрывная функция имеет/не имеет первообразной? И вообще, обозначается ли как-нибудь класс функций имеющих первообразную на данном отрезке? (очевидно, что такой класс не совпадает с классом функций, интегрируемых по Риману, более того, они даже не вкладываются друг в друга).