Мое увлечение ВТФ иногда дает результаты лежащие в стороне от главной темы, но интересные сами по себе. Одна из таких ветвей - комбинаторно-геометрический подход к нахождению корней многочленов. Долго у меня ничего не получалось, да и сейчас это лишь первый набросок, но мне он кажется любопытным. Возможно, из него удастся извлечь практическую пользу, например, улучшить соответствующие алгоритмы. Основа представляемого мной способа давно известна, но я не встречал такого ее приложения. Коротко напомню суть дела.
Натуральное число в натуральной степени можно представить в виде суммы

где

- числа Стирлинга второго рода, а

- биномиальные коэффициенты.
Оказалось, что произведения факториалов на числа Стирлинга в этой формуле можно заменить специальными числами, которых я не нашел в литературе, вычисляемые по рекуррентному правилу (но можно вычислять и другим способом)

Тогда формула для степени числа примет вид скалярного произведения

где векторами будут строки треугольников - Паскаля и

-треугольника.
Приведу первые строки каждого из них


Но многочлен от одной переменной имеющий корни тоже можно рассмотреть как скалярное произведение ортогональных векторов - вектора степеней переменной и вектора коэффициентов

Используя эти два условия - представление числа в степени как скалярного произведения и представление многочлена как скалярного произведения - можно переписать многочлен как новое скалярное произведение с коэффициентами при элементах строки треугольника Паскаля.
Покажу на примере.
Рассмотрим квадратное уравнение

Преобразуем его к скалярному произведению со строкой треугольника Паскаля. Для этого вычислим новый вектор коэффициентов

и далее получим необходимое нам скалярное произведение

или

но

откуда

или

и значит

или

что проверяется подстановкой в исходное уравнение.
Для третьей степени картина усложняется, но принцип остается тем же.
Конечно, проще всего это выглядит для натуральных различных корней и будет ли работать схема для рациональных и кратных корней я не знаю.
Было бы интересно проверить способ на уравнении пятой степени.
Пожалуйста, приведите многочлен пятой степени
корни которого натуральны и различны, а я попробую их найти пользуясь этим методом и, если получится, распишу решение по шагам.