2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Как численно восстановить функцию по её производной?
Сообщение09.10.2013, 14:11 
Дана функция $f\left( x,y \right)=\frac{1}{\pi }\sin \left( \frac{\pi x}{2} \right)\left[ 2\sin \left( \frac{\pi y}{2} \right)-\pi y\cos \left( \frac{\pi y}{2} \right) \right]$ на сетке $-1\le x\le 1$, $0\le y\le 2$. При этих данных восстановить $u(x,y)$ на этом же сетке. $u(x,y)$ финитная функция.
$\frac{\partial }{\partial x}u\left( x,y \right)=\frac{1}{2}\frac{{{\partial }^{2}}}{\partial {{x}^{2}}}f\left( x,y \right)-\frac{1}{2}\frac{{{\partial }^{2}}}{\partial {{y}^{2}}}f\left( x,y \right)$

 
 
 
 Re: Как численно восстановить функцию по её производной?
Сообщение09.10.2013, 23:26 
Аватара пользователя
Разбейте область на клетки, в центре каждой будет лежать узел с известным $f$. Проинтегрируйте уравнение для $u$ по одной такой клетке. Производные на границах аппроксимируйте конечными разностями по узловым значениям. Решите полученную систему уравнений. Когда будете сравнивать с точным решением, учтите, что в узлах "сидят" не сами $u$, а их "стеклизации".

 
 
 
 Re: Как численно восстановить функцию по её производной?
Сообщение10.10.2013, 01:53 
Аватара пользователя

(Оффтоп)

По запросу «стеклизация» Гугл выдал ровно один результат. Завтра заглянет сюда и будет выдавать два ;-)

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group