2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Вычислить предел с помощью правила Лопиталя
Сообщение29.09.2013, 18:02 
$\lim\limits_{x \to \infty} (x \cdot \ln(x) - \sqrt{x+x^2})$

Мои мысли:

$\lim\limits_{x \to \infty} (x \cdot \ln(x) - \sqrt{x+x^2}) = \lim\limits_{x \to \infty} \left( \frac{(x \cdot \ln(x) - \sqrt{x+x^2}) \cdot (x \cdot \ln(x) + \sqrt{x+x^2})}{x \cdot \ln(x) + \sqrt{x+x^2}} \right ) = \lim\limits_{x \to \infty} \left( \frac{x^2 \cdot \ln^2(x) -x-x^2}{x \cdot \ln(x) + \sqrt{x+x^2}} \right )$

Далее не могу понять, какая неопределенность получается...

Заранее спасибо за помощь!

 
 
 
 Re: Вычислить предел с помощью правила Лопиталя
Сообщение29.09.2013, 18:07 
Limit79 в сообщении #769073 писал(а):
$\lim\limits_{x \to \infty} (x \cdot \ln(x) - \sqrt{x+x^2})$
Просто вынесите $x$ за скобку.

 
 
 
 Re: Вычислить предел с помощью правила Лопиталя
Сообщение29.09.2013, 18:20 
nnosipov

$$\lim\limits_{x \to \infty} (x \cdot \ln(x) - \sqrt{x+x^2}) = \lim\limits_{x \to \infty} \left(x \cdot \left(\ln(x) - \sqrt{1+\frac{1}{x}}\right)\right) =  \lim\limits_{x \to \infty} \left(x \cdot (\ln(x) - 1)\right) = \infty$$

А правило Лопиталя как использовать?

 
 
 
 Re: Вычислить предел с помощью правила Лопиталя
Сообщение29.09.2013, 18:30 
Limit79 в сообщении #769080 писал(а):
А правило Лопиталя как использовать?
А что, был приказ использовать правило Лопиталя?

 
 
 
 Re: Вычислить предел с помощью правила Лопиталя
Сообщение29.09.2013, 18:36 
nnosipov
В задании так написано (в названии топика написал).

 
 
 
 Re: Вычислить предел с помощью правила Лопиталя
Сообщение29.09.2013, 18:51 
Аватара пользователя
Может быть
$$...=\lim\limits_{x \to \infty} \dfrac { \ln(x) - \sqrt{1+\dfrac 1x}}{\dfrac1x} = ...$$

Да как ни крути, получается бесконечность без всяких Лопиталей.

 
 
 
 Re: Вычислить предел с помощью правила Лопиталя
Сообщение29.09.2013, 18:52 
Есть такая идея:

$\lim\limits_{x \to \infty} (x \cdot \ln(x) - \sqrt{x+x^2}) = \lim\limits_{x \to \infty} \left( \frac{(x \cdot \ln(x) - \sqrt{x+x^2}) \cdot (x \cdot \ln(x) + \sqrt{x+x^2})}{x \cdot \ln(x) + \sqrt{x+x^2}} \right ) = \lim\limits_{x \to \infty} \left( \frac{x^2 \cdot \ln^2(x) -x-x^2}{x \cdot \ln(x) + \sqrt{x+x^2}} \right ) = $
$= \lim\limits_{x \to \infty} \left( \frac{x \cdot \ln^2(x) -1-x}{\ln(x) + \sqrt{1+\frac{1}{x}}} \right ) = \lim\limits_{x \to \infty} \left( \frac{x \cdot \ln^2(x) -1-x}{\ln(x) + \sqrt{1+0}} \right ) = \lim\limits_{x \to \infty} \left( \frac{x \cdot \ln^2(x) -1-x}{\ln(x) + 1} \right )$

Но неопределенность какого вида будет в последнем выражении?

-- 29.09.2013, 19:53 --

gris
А какая неопределенность будет в Вашем выражении?

 
 
 
 Re: Вычислить предел с помощью правила Лопиталя
Сообщение29.09.2013, 18:53 
Да уж ... Но это извращение какое-то. Тогда берите ту Вашу дробь (предварительно сократите числитель и знаменатель на $x$, если не хотите продлить удовольствие) и тупо дифференцируйте --- там неопределённость типа $\infty/\infty$.

 
 
 
 Re: Вычислить предел с помощью правила Лопиталя
Сообщение29.09.2013, 18:57 
nnosipov
$\lim\limits_{x \to \infty} \left( \frac{x \cdot \ln^2(x) -1-x}{\ln(x) + 1} \right )$

То есть $\frac{\infty - \infty}{\infty} = \frac{\infty}{\infty}$?

 
 
 
 Re: Вычислить предел с помощью правила Лопиталя
Сообщение29.09.2013, 19:02 
Это какое-то извращение в квадрате: чтобы обосновать применение правила Лопиталя, нужно по-простому вычислить предел числителя. Даже затрудняюсь, что посоветовать ... Это Вам действительно преподаватель такое задание выдал?

 
 
 
 Re: Вычислить предел с помощью правила Лопиталя
Сообщение29.09.2013, 19:05 
nnosipov
Задание из методички...

 
 
 
 Re: Вычислить предел с помощью правила Лопиталя
Сообщение29.09.2013, 19:06 
Аватара пользователя
Можно рассмотреть как $\ln \dfrac{e^{x\ln x}}{e^{\sqrt{x + x^2}}}}$

 
 
 
 Re: Вычислить предел с помощью правила Лопиталя
Сообщение29.09.2013, 19:07 
Аватара пользователя
Может быть, там всё-таки опечатка? Спросите у преподавателя.

 
 
 
 Re: Вычислить предел с помощью правила Лопиталя
Сообщение29.09.2013, 19:14 
Xaositect
Спасибо, идея хорошая, но первое дифференцирование ни к чему не привело, а дальше производные получаются громоздкие слишком...

Aritaborian
Возможно, спрошу.

-- 29.09.2013, 20:19 --

Насколько я понял, если домножить на сопряженное, то правило Лопиталя применить нельзя?

 
 
 
 Re: Вычислить предел с помощью правила Лопиталя
Сообщение29.09.2013, 19:20 
Аватара пользователя
Это джедайское задание. Кто достиг совершенства в использовании инструмента, тот знает, когда надо отставить в сторону и сделать без него.

 
 
 [ Сообщений: 20 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group