2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Точки и прямые
Сообщение20.08.2013, 23:34 
Аватара пользователя
А вот эта чуть посложнее будет.

Задача.
Докажите, что любые $2nm$ точек плоскости, никакие три из которых не лежат на одной прямой, можно разделить $n$ прямыми, не проходящими ни через одну из этих точек, на области, в каждой из которых расположено не более $m$ точек ($n$ и $m$ - любые натуральные).

 
 
 
 Re: Точки и прямые
Сообщение21.08.2013, 12:50 
Аватара пользователя
Dave в сообщении #756288 писал(а):
Задача.
Докажите, что любые $2nm$ точек плоскости, никакие три из которых не лежат на одной прямой, можно разделить $n$ прямыми, не проходящими ни через одну из этих точек, на области, в каждой из которых расположено не более $m$ точек ($n$ и $m$ - любые натуральные).

Как и в предыдущей задаче, прямой линией $L$ разделим точки на равные части синего и красного цвета. Очень косо спроецируем все точки на $L$, так что проекции красных и синих не чередуются. Затем плавно изменяем угол проекции (проекции красных и синих плавно ползут друг к другу, постепенно перемешиваются, меняются местами) и дожидаемся момента, когда на $L$ можно с одного края отделить по $m$ красных и синих проекций.

Т.е. $m$-я по счету справа синяя проекция и $m$-я по счету справа красная проекция непрерывно зависят (их положение на прямой $L$ зависит) от угла (параллельного) проецирования и изменяются в противоположных направлениях, поэтому при каком-то угле они совпадут.

 
 
 
 Re: Точки и прямые
Сообщение22.08.2013, 00:32 
Аватара пользователя
Да, всё правильно. Это был двухмерный дискретный случай. Оказывается, народ уже додумался и до трёхмерного непрерывного. Там даже три тела одновременно можно разделить плоскостью.

 
 
 
 Re: Точки и прямые
Сообщение22.08.2013, 11:05 
Аватара пользователя
Всё-таки это другая задача. И очень старая, кстати. Dave, неужели вы о ней никогда не слышали?

 
 
 
 Re: Точки и прямые
Сообщение22.08.2013, 16:50 
Аватара пользователя
Нет, не слышал. И мне кажется, там какого-то условия в формулировке недостаёт для строгости. Выпуклости тел, наверное.

 
 
 
 Re: Точки и прямые
Сообщение22.08.2013, 17:09 
Аватара пользователя
С чего бы там требовать выпуклость?

 
 
 
 Re: Точки и прямые
Сообщение22.08.2013, 18:21 
Аватара пользователя
Dave в сообщении #756495 писал(а):
Да, всё правильно. Это был двухмерный дискретный случай. Оказывается, народ уже додумался и до трёхмерного непрерывного. Там даже три тела одновременно можно разделить плоскостью.

Каждое тело всего на две равные части. Вот здесь задача из этой оперы задача про голодного студента

 
 
 [ Сообщений: 22 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group