2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Множества отображение и сравнение мощностей
Сообщение24.06.2013, 20:48 
Аватара пользователя
Задача состоит в том, чтобы сравнить мощности (не обязательно указывая, какие они) множества отображений из натуральных чисел в действительные $\lvert \mathbb N ^ \mathbb R \rvert$ и из действительных в натуральные $\lvert \mathbb R ^ \mathbb N \rvert$.

Подскажите, правилен ли ход моих мыслей, если да, то что следует из измышлений подкорректировать?

Мое предположение состоит в том, что $\lvert \mathbb N ^ \mathbb R \rvert > \lvert \mathbb R ^ \mathbb N \rvert$.


Можно сказать, что $\lvert \mathbb N ^ \mathbb R \rvert \le \lvert \mathbb R ^ \mathbb R \rvert \le \lvert P(\mathbb R \times \mathbb R) \rvert = \aleph_2$.
Обратное включение можно, в принципе, показать тем, что $\mathbb N \supseteq \lbrace 0,1\rbrace \Rightarrow \mathbb N ^ \mathbb R \supseteq \lbrace 0,1 \rbrace ^ \mathbb R \sim P(\mathbb R) \Rightarrow \lvert \mathbb N ^ \mathbb R \rvert \ge \aleph_2$

Остается только показать, что $\lvert \mathbb R ^ \mathbb N \rvert = \aleph_1$, ну, или, хотя бы, $\lvert \mathbb R ^ \mathbb N \rvert \le \aleph_1$ (в обратную сторону мне, вроде как, известно, но для решения задачи это никак не поможет)

-- 24.06.2013, 20:32 --

По идее, можно как-то показать, что существует биекция $\mathbb R ^ \mathbb N \sim P(\mathbb N)$, и это даже логично... Но только вот как эта биекция будет задаваться... :o

-- 24.06.2013, 20:38 --

С другой стороны, $P(\mathbb N) \sim \lbrace 0,1\rbrace ^ \mathbb N$.
Первое будет представлять множество всех функций $f: \mathbb N \rightarrow \mathbb R$, вторая - множество всех функций $g: \mathbb N \rightarrow \mathbb \lbrace 0,1 \rbrace$. Но снова же, как биекцию построить... Люди, помогите!

 
 
 
 Re: Множества отображение и сравнение мощностей
Сообщение25.06.2013, 04:52 
Nikys в сообщении #740038 писал(а):
Задача состоит в том, чтобы сравнить мощности (не обязательно указывая, какие они) множества отображений из натуральных чисел в действительные $\lvert \mathbb N ^ \mathbb R \rvert$ и из действительных в натуральные $\lvert \mathbb R ^ \mathbb N \rvert$.


С обозначениями у вас непорядок, все наоборот: $ \mathbb N ^ \mathbb R $ --- это все отображения из действительных в натуральные, а $ \mathbb R ^ \mathbb N $ --- это из натуральных в действительные.

А так вроде правильно рассуждаете. Биекцию же проще всего (по-моему) строить руками по тому же принципу, что использовался при доказательстве равномощности квадрата отрезку. Вместо последовательностей вещ. чисел рассматривайте последовательности, у которых все элементы из $[0;1]$.

Это я про отображение $\mathbb{R}^{ \mathbb{N} } \rightarrow \mathbb{R} $, не про $P(\mathbb{N})$.

 
 
 
 Re: Множества отображение и сравнение мощностей
Сообщение25.06.2013, 07:15 
$|\mathbb{R}^\mathbb N|=(2^{\aleph_0})^{\aleph_0}=2^{\aleph_0^2}=2^{\aleph_0}$
$|\mathbb N^{\mathbb R}|=2^{2^{\aleph_0}}$
По теореме Кантора второе больше.

 
 
 
 Re: Множества отображение и сравнение мощностей
Сообщение25.06.2013, 11:55 
Аватара пользователя
Nikys в сообщении #740038 писал(а):
Можно сказать, что $\lvert \mathbb N ^ \mathbb R \rvert \le \lvert \mathbb R ^ \mathbb R \rvert \le \lvert P(\mathbb R \times \mathbb R) \rvert = \aleph_2$.
Обратное включение можно, в принципе, показать тем, что $\mathbb N \supseteq \lbrace 0,1\rbrace \Rightarrow \mathbb N ^ \mathbb R \supseteq \lbrace 0,1 \rbrace ^ \mathbb R \sim P(\mathbb R) \Rightarrow \lvert \mathbb N ^ \mathbb R \rvert \ge \aleph_2$

Остается только показать, что $\lvert \mathbb R ^ \mathbb N \rvert = \aleph_1$, ну, или, хотя бы, $\lvert \mathbb R ^ \mathbb N \rvert \le \aleph_1$ (в обратную сторону мне, вроде как, известно, но для решения задачи это никак не поможет)
Откуда взялись $\aleph_1$ и $\aleph_2$?
$|\mathbb R|=\mathfrak c=2^{\aleph_0}$ - континуум. Это может быть $\aleph_1$, но может быть и гораздо больше, чем $\aleph_1$. Поэтому доказать равенство $|\mathbb R^{\mathbb N}|=\aleph_1$ никак не удастся.

 
 
 
 Re: Множества отображение и сравнение мощностей
Сообщение25.06.2013, 14:43 
Аватара пользователя
Someone
$\aleph_2$ написано откуда берется - из булеана континуума, я показал как. Как показать равенство мощности отображения натуральных чисел в действительные $\aleph_1$? :o

 
 
 
 Re: Множества отображение и сравнение мощностей
Сообщение25.06.2013, 15:21 
Аватара пользователя
Из булеанов получаются не $\aleph_1$ и $\aleph_2$, а $\beth_1 = 2^{\aleph_0}$ и $\beth_2 = 2^{\beth_1}$.

Nikys в сообщении #740272 писал(а):
Как показать равенство мощности отображения натуральных чисел в действительные $\aleph_1$?
Никак - это континуум-гипотеза.

 
 
 
 Re: Множества отображение и сравнение мощностей
Сообщение25.06.2013, 17:33 
Аватара пользователя
Nikys в сообщении #740272 писал(а):
$\aleph_2$ написано откуда берется - из булеана континуума, я показал как.
Неверно. Булеан континуума не обязан иметь мощность $\aleph_2$, он может иметь мощность существенно больше $\aleph_2$. Даже континуум может быть больше $\aleph_2$.

Nikys в сообщении #740272 писал(а):
Как показать равенство мощности отображения натуральных чисел в действительные $\aleph_1$?
Сформулировано совершенно жутко. Речь ведь идёт не о мощности отображения, а о мощности множества отображений. И показать то, что Вы хотите, нельзя. Потому что мощность множества отображений $\mathbb N$ в $\mathbb R$ равна континууму, то есть, $2^{\aleph_0}$, а не $\aleph_1$. Равенство $2^{\aleph_0}=\aleph_1$ возможно, но также возможно и неравенство $2^{\aleph_0}>\aleph_1$.

Вообще, Вы явно только что начали изучать теорию множеств, поэтому Вам целесообразно не цепляться за свои заблуждения, а внимательно слушать старших товарищей.

 
 
 
 Re: Множества отображение и сравнение мощностей
Сообщение25.06.2013, 22:57 
Аватара пользователя
Someone
Нуу, эти мои заблуждения в общей мере больше состоят из-за поверхностного уровня преподавания дискретной математики. Именно там нам и поведали, мол, у континуума мощность $\aleph_1$, а континуум-гипотезу представили как гипотезу про то, что между $\aleph_0$ и $\aleph_1$ ничего нет. Тогда я понял, в чем загвоздка. Хорошо, тогда мне надо будет изучить теорию множеств не на университетском уровне.

 
 
 
 Re: Множества отображение и сравнение мощностей
Сообщение25.06.2013, 23:48 
Аватара пользователя
Nikys в сообщении #740532 писал(а):
Именно там нам и поведали, мол, у континуума мощность $\aleph_1$, а континуум-гипотезу представили как гипотезу про то, что между $\aleph_0$ и $\aleph_1$ ничего нет.
Нет. Континуум, по определению, есть мощность множества всех действительных чисел, а континуум-гипотеза состоит в том, что между мощностью множества натуральных чисел и мощностью множества действительных чисел промежуточных мощностей нет. Мощность множества натуральных чисел обозначается $\aleph_0$; нетрудно доказать, что мощность множества действительных чисел равна $2^{\aleph_0}$. Континуум-гипотеза, таким образом, состоит в том, что между $\aleph_0$ и $2^{\aleph_0}$ промежуточных мощностей нет, то есть, что $2^{\aleph_0}=\aleph_1$. Как выяснилось, это равенство, пользуясь аксиомами теории множеств, невозможно ни доказать, ни опровергнуть, потому что может оказаться и равенство, и неравенство.

Nikys в сообщении #740532 писал(а):
Тогда я понял, в чем загвоздка. Хорошо, тогда мне надо будет изучить теорию множеств не на университетском уровне.
???
Я в своё время изучал теорию множеств именно на университетском уровне (мехмат МГУ).

 
 
 
 Re: Множества отображение и сравнение мощностей
Сообщение26.06.2013, 00:33 
Аватара пользователя
Someone[/b]
Цитата:
Я в своё время изучал теорию множеств именно на университетском уровне (мехмат МГУ).
[b]
На кибернетике КНУ все немного упрощенней. Теорию множеств тут втянули в один месяц изучения (если не меньше), а со следующего года дискретной математики не будет. Безблагодатная почва, буду изучать сам тогда...

Но большое спасибо за уточнение, буду знать о своей неграмотности

 
 
 
 Re: Множества отображение и сравнение мощностей
Сообщение26.06.2013, 00:37 
Аватара пользователя
Можете почитать брошюрку Верещагин, Шень "Начала теории множеств" ( http://www.mccme.ru/free-books/ )

 
 
 [ Сообщений: 11 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group