2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Система уравнений
Сообщение02.06.2013, 02:38 
Система уравнений $\dfrac{x}{65}+2,5=\dfrac{x}{y}$ и $\dfrac{2x}{65}+2,5=\dfrac{420}{x}$

Какой оптимальный способ решения этой системы? Если решать подстановкой, там получится квадратное уравнение с 5-10 значными несократимыми коэффициентами. Есть ли более рациональный путь? Сложение и разность уравнений - ни к чему хорошему не привели...

 
 
 
 Re: Система уравнений
Сообщение02.06.2013, 03:13 
Ничего не напутали в условиях? Ну, квадратное уравнение. Ну, один пятизначный коэффициент. Это что, повод для отчаяния?

 
 
 
 Re: Система уравнений
Сообщение02.06.2013, 03:25 
iifat в сообщении #731416 писал(а):
Ничего не напутали в условиях? Ну, квадратное уравнение. Ну, один пятизначный коэффициент. Это что, повод для отчаяния?


Не напутал в условиях! Вручную считать печально, потому спрашиваю про хитрость, может каким-то образом можно переобозначить или исхитриться, чтобы уйти от громоздких вычислений?

 
 
 
 Re: Система уравнений
Сообщение02.06.2013, 03:46 
lampard в сообщении #731414 писал(а):
Система уравнений $\dfrac{x}{65}+2,5=\dfrac{x}{y}$ и $\dfrac{2x}{65}+2,5=\dfrac{420}{x}$

Какой оптимальный способ решения этой системы? Если решать подстановкой, там получится квадратное уравнение с 5-10 значными несократимыми коэффициентами. Есть ли более рациональный путь? Сложение и разность уравнений - ни к чему хорошему не привели...


Во втором уравнении отсутствует y. Решаете это кв. уравнение и подставляйте во второе. Это разве сложности? В столбик всё посчитать реально.

 
 
 
 Re: Система уравнений
Сообщение02.06.2013, 03:57 
Ой, а опечатка все-таки есть(

$\dfrac{x}{65}+2,5=\dfrac{x}{y}$ и $\dfrac{2x}{65}+2,5=\dfrac{420}{y}$

Но именно в этом уравнении (после исправления опечатки) получаются страшные коэффициенты.

 
 
 
 Re: Система уравнений
Сообщение02.06.2013, 04:20 
Ну можете ввести замену $\[\frac{x}{{65}} = t\]$, чуть проще будет. Но я же говорю, в столбик всё считается нормально.

 
 
 
 Re: Система уравнений
Сообщение02.06.2013, 04:42 
Ms-dos4 в сообщении #731421 писал(а):
Ну можете ввести замену $\[\frac{x}{{65}} = t\]$, чуть проще будет. Но я же говорю, в столбик всё считается нормально.

Спасибо.

 
 
 [ Сообщений: 7 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group