2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 функциональный анализ, задачи
Сообщение21.04.2007, 11:52 
Здравствуйте!

после пятилетнего перерыва решила продолжить учебу, помогите, пожалуйста, вернуться в русло! Задачи из курса ФАН2 Венского политеха.

1. $\phi_1,...\phi_n, \psi_1,...,\psi_n$ - элементы гильбертова пространства H. Вычислить оператор, сопряженный к $T(x)=\sum^{n}_{i=0}\left\langle x, \phi_i\right\rangle\psi_i$ , для x из H.

2. покажите. что построение сопряжения в L(H) непрерывно относительно слабой операторной топологии на L(H) и не непрерывно относительно сильной операторной топологии на L(H). подсказка: степени shiftoperator (?)

3. Оператор A из L(H) самосопряженный. Если оператор В из L(H) коммутирует с А, то В коммутирует с f(A) (f- любая непрерывная).

 
 
 
 Re: функциональный анализ
Сообщение21.04.2007, 19:05 
1. $T^*(y)=\sum\limits^{n}_{i=0}\left\langle y, \psi_i\right\rangle\phi_i$

 
 
 
 
Сообщение21.04.2007, 19:41 
спасибо, Андрей, помогите, пожалуйста - как получить решение?

по книжкам я попытлась начать решать, дело дальше не идет..
$y=Tx, f=g(Tx), f=T^{*}g, (g, Tx) = (T^{*}g, x)$

$f(x) = g(T(x)) = g(\sum^{n}_{i=0}\left\langle x, \phi_i\right\rangle\psi_i) = .. ?? .. = $

 
 
 
 
Сообщение21.04.2007, 20:27 
Сопряженный оператор определяется равенством $\langle Tx,y\rangle=\langle x,T^*y\rangle$.

$\langle Tx,y\rangle=\langle\sum\limits_{i=1}^n \langle x,\phi_i\rangle\psi_i, y \rangle=\sum\limits_{i=1}^n \langle x,\phi_i \rangle \langle \psi_i,y\rangle=\langle x,\sum\limits_{i=1}^n \langle y,\psi_i\rangle, \phi_i\rangle=\langle x,T^*y\rangle$.

Откуда и получаем сопряженный оператор.

 
 
 
 
Сообщение21.04.2007, 21:13 
Ура! Спасибо, все понятно. В моем скрипте из уни определение через функционалы f и g, я здорово запуталась.

Добавлено спустя 20 минут 28 секунд:

Вот еще задачка:

K - компактный оператр в H. Тогда оператор $(K^{*}K)^{1/2}$ компактный.

Я подозреваю, что надо как-то использовать факт, что пространство компакных операторов замкнуто в L(H), и KB для $B\in{L(H)}$ компактен. Дальше моя мысль не идет... :oops:

 
 
 
 
Сообщение22.04.2007, 00:00 
Ну... можно из пушки стрельнуть, nо бишь, долбануть по этой штуке теоремой Шмидта (о разложении компактного оператора). Находим ортонормированный базис собственных векторов, записываем в нем оператор и его сопряженный, перемножаем их, явным образом извлекаем корень и убеждаемся, что он
1) извлекается,
2) даст компактный оператор.

 
 
 
 
Сообщение22.04.2007, 09:47 
Вы не поверите - самое смешное, что ортонормальное представление Шмидта идет в списке заданий следующим номером (в смысле надо показать, что таое представление для компактного оператора возможно). Так что приходится пока ковыряться без тяжелой артиллерии...

 
 
 
 
Сообщение22.04.2007, 10:14 
Аватара пользователя
Если существование корня принять на веру, то компактность его проверяется очень легко по определению. Надо доказать, что для любой последовательности $x_n\in H$ такой, что $\|x_n\|\leqslant1$, последовательность $(K^*K)^{1/2}x_n$ имеет фундаментальную подпоследовательность.

P.S. На самом деле из компактности любого из 3 операторов $K,K^*,K^*K$ ($K\colon H\to H~-$ линейный ограниченный оператор, $H~-$ гильбертово) следует компактность всех трёх, т.е. следующие утверждения эквивалентны:
(1) $K~-$ компактный;
(2) $K^*~-$ компактный;
(3) $K^*K~-$ компактный.

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group