2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 ДУ + семейство линий
Сообщение15.04.2007, 12:04 
Подскажите, как решить подобную задачу:
Составить ДУ данного семейства линий: Cy - sinCx = 0.
Насколько я знаю, уравнение вида F(x,y,C)=0 (здесь F(x,y,C) = Cy - sinCx) нужно дифференцировать необходимое число раз, чтобы избавиться от неизвестной постоянной С, которая обычно фигурирует в общем решении ДУ.
Но тут - С стоит под знаком синуса, соответственно, как в этом случае от нее избавиться, если она будет присутствовать в любой n-ной производной??
Или ДУ этого семейства будет содержать константу?

 
 
 
 
Сообщение15.04.2007, 12:41 
Аватара пользователя
А если так:\[
y'' =  - C\sin Cx \Rightarrow y'' =  - C^2 y \Rightarrow y'''y - y''y' = 0
\] ?

 
 
 
 
Сообщение15.04.2007, 16:27 
Дааа... Оказывается, и такая задача может быть не тривиальной =) А то в задачниках во всех примеры очень простые, а тут вот как вывернуть надо... Спасибо большое!

 
 
 
 
Сообщение15.04.2007, 16:51 
Аватара пользователя
Brukvalub писал(а):
А если так:\[
y'' =  - C\sin Cx \Rightarrow y'' =  - C^2 y \Rightarrow y'''y - y''y' = 0
\] ?


Нет, это как-то нехорошо. В семействе одна произвольная постоянная, поэтому надо обойтись первой производной.

Дифференцируя уравнение $Cy-\sin Cx=0$ по $x$, получим $Cy'-C\cos Cx=0$, откуда $\sin Cx=Cy$ и $\cos Cx=y'$; возводя в квадрат и складывая, получим $1=C^2y^2+(y')^2$. Из этого уравнения выражаем $C=\pm\frac 1y\sqrt{1-(y')^2}$. Осталось подставить это выражение в уравнение с косинусом: $y'=\cos\left(\frac xy\sqrt{1-(y')^2}\right)$.

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group