Найти мощность всех рациональных функций одного переменного.
Решал эту задачу на контрольной так: решил взять одну из этих рациональных функций
, ее мощность континуум, потому что мощность прямой континуум. Так я утверждал, что мощность всех рациональных функций будет не меньше континуума. Но преподаватель сказал, что так нельзя решать задачу.
Решил так сделать: рассматриваю все возможные многочлены, которые конечны. Из их коэффициентов составил матрицу. Так как коэффициенты действительные, то есть там рациональные и ирациональные числа могут быть.
Значит множество всех возможных значений одного коэффициента будет континуум. Далее я помню, что у меня многочлены конечные, значит коэффициенты сами в многочлене я могу пронумеровать, их будет конечное число в этом случае. Теперь самих многочленов бесконечно много, но сами многочлены я тоже могу пронумеровать. Значит, все коэффициенты всех возможных многочленов я могу пронумеровать. Тогда их множество счетное. А множество всех возможных значений одного коэффициента континуум. Тогда получается объединение континуум множеств, число их счетное. Тогда результат будет континуум.
Вот так теперь думаю решать задачу.
Как вам такое решение ? Все ли правильно я изложил ? Если что-то не так, пожалуйста, поправьте меня.