Приветствую!
Появилось желание повторить (а точнее, изучить) основные области математики заново. Сейчас учусь на 4 курсе ВМК МГУ, но уровень знаний у меня никакущий
Собственно, большинство учебников-лекции, по которым я сдавал были крайне неприятными, с искусственным построением курса (вроде "Возьмем eps = 1/4*pi*s^e^4^17283 и получим", "Возьмем функционал @J=x^336436+u^232+крокодилистый интеграл@ , и, внезапно, наша задача эквивалентна минимизации это функционала (понятно, что у этого есть ноги и уши, смысл которого можно понять. Но, как правило, они обрезаются и мы пользуемся формально доказанными волшебными свойствами) , с большое количество всяких искусственных предположений (а давайте предположим нашу теорему а потом докажем её по индукции), которые волшебным образом используются, огромное число математической эквилибристики) Иногда все не настолько плохо - но все равно не нравится
Хотелось бы увидеть курс, который построен на более-менее естественном обучении, не экономящем места, в котором понятно, откуда возникла такая задача, как её пробовали решать и как в итоге решали её в первые разы (не знаю, как нормально объяснить, но думаю, вы меня поняли), где логические переходы в доказательствах не являются использованием неких "хинтов" - а логичны.
Короче говоря, хотелось бы прийти к пониманию. Иногда бывают просветы (которые порой проявляются от пары услышанных слов, именно которых и недоставало всё это время), но в целом, это бывает нечасто
Начать хотел бы вот с чего (хотя всё же, в основах я разбирался - но перечитать хорошую литературу точно не будет лишним)
Для начала Линал, общая алгебра, матан, функан, матлогика,
Попозже: диффуры, оптим. управление - вариационное исчисление, тервер-матстат.
Если видите другие варианты - просьба их озвучить :)
Просьба посоветовать что-нибудь, если формулировки мои не ясны, буду рад их дополнить
спасибо
|