2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.



Начать новую тему Ответить на тему
 
 исследовать на равномерную сходимость
Сообщение16.02.2013, 13:40 


22/09/10
75
a)$f_n(x)=[x+\frac{(-1)^n}{n}]^n, x=(-1;1)$
f(x)=0.
$\lim_{n \to \infty}f_n(x)=\lim_{n \to \infty}[x+\frac{(-1)^n}{n}]^n=0$
$|f_n(x)-f(x)|=|[x+\frac{(-1)^n}{n}]^n|$
Дальше это нужно как-то хитро оценить, но вот как, придумать не могу.
б) $\sum_{n = 1}^{\infty}\sqrt{x}e^{-nx}$; $x=(0;+\infty)$
$f'_n(x)=1/2x^{-1/2}e^{-nx}-nx^{1/2}e^{-nx}=ne^{-nx}x^{1/2}(\frac{1}{2xn}-1)$
$x=\frac{1}{2n}$
$||f_n||=\frac{1}{\sqrt{2}n^{1/2}e^{1/2}}$
Равномерной сходимости ни по какому признаку нет, значит надо доказать ее отсутствие, как это сделать?

 Профиль  
                  
 
 Re: исследовать на равномерную сходимость
Сообщение16.02.2013, 14:43 
Заслуженный участник


12/08/10
1677
а)$f_n(x)=[1+\frac{(-1)^n}{n}]^n$ к нулю не стремиться, надо это использовать.
б)$\sum_{n = 1}^{m}\sqrt{x}e^{-nx}$ можно посчитать явно.

 Профиль  
                  
 
 Re: исследовать на равномерную сходимость
Сообщение17.02.2013, 11:29 


22/09/10
75
б) И как использовать, что можно подсчитать явно? И да, как вы это узнали?

 Профиль  
                  
 
 Re: исследовать на равномерную сходимость
Сообщение17.02.2013, 12:50 
Заслуженный участник


12/08/10
1677
Ну это геометрическая прогрессия.
Если считается явно, то можно можно оценить хвост и воспользоваться определением равномерной сходимости.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 4 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group