2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Однородная разностная схема
Сообщение29.01.2013, 03:59 
Допустим, есть задача:
$ \dfrac{d^2u(x)}{dx^2}-au(x)=-b, x\in(0,1), x\neq\dfrac13$,
заданы еще какие-то условия на концах отрезка, пусть $u(0)=1, u'(1)=2$, $a=1.5$, $b=5$
плюс условие $\dfrac{du}{dx}\left(\dfrac13-0\right)=4\dfrac{du}{dx}\left(\dfrac13+0\right)$.
Как для такой задачи построить однородную разностную схему?

Я как-то не понял, как однородность (это ведь значит, что в разностной схеме нужно коэффициенты по одной формуле вычислять?) связать с этим разрывом производной, ведь должно же выполняться $y_{i}-y_{i-1}=4(y_{i+1}-y_{i})$ при некотором $i$.

Да и как вообще строить и потом исследовать на сходимость однородные разностные схемы? Хотя бы на простейших примерах.

 
 
 
 Re: Однородная разностная схема
Сообщение29.01.2013, 16:04 
Аватара пользователя
Во внутренних точках единообразно аппроксимируйте уравение. А в граничных точка (которыми считайте точки $0, 1/3, 1$) аппроксимируте заданные там условия.

 
 
 
 Re: Однородная разностная схема
Сообщение29.01.2013, 20:08 
Что-то типа:
$y_{0}=1,$

$\dfrac{y_{i-1}-2y_{i}+y_{i+1}}{h^2}-ay_{i}=-b, i=1\,..\,N-1,$

$y_{N}-y_{N-1}=4(y_{N+1}-y_{N}),$

$\dfrac{y_{i-1}-2y_{i}+y_{i+1}}{h^2}-ay_{i}=-b, i=N+1\,..\,3N-1,$

$\dfrac{y_{3N}-y_{3N-1}}{h}=2?$

 
 
 
 Re: Однородная разностная схема
Сообщение29.01.2013, 20:13 
Аватара пользователя
Да, типа этого.

 
 
 
 Re: Однородная разностная схема
Сообщение29.01.2013, 20:22 
А в чем в таком случае выражается однородность? В том что не на "концах" она однородна?

И еще, чтобы исследовать подобную схему на сходимость, нужно решение исходной задачи искать, или есть другие пути?

 
 
 
 Re: Однородная разностная схема
Сообщение29.01.2013, 20:37 
Аватара пользователя
Nemiroff в сообщении #677719 писал(а):
А в чем в таком случае выражается однородность? В том что не на "концах" она однородна?
Это надо уточнять у того, кто просит однородность.

Сходимость попробуйте выяснить опытным путем (расчетами на последователоьности сеток и на задачах с точным решением)

 
 
 
 Re: Однородная разностная схема
Сообщение30.01.2013, 00:21 
TOTAL в сообщении #677724 писал(а):
Сходимость попробуйте выяснить опытным путем (расчетами на последователоьности сеток и на задачах с точным решением)
Угу. Спасибо.
А если хочется порядок сходимости в такой схеме отыскать точно? Меня просто разрыв смущает.
В явном виде сравнивать точное решение на сетке и решение СЛАУ не хочется, а в теоремах, которые сходимость на аппроксимацию заменяют не пойму, можно ли забить на разрыв производной.

 
 
 [ Сообщений: 7 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group