2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Beautiful concyclic
Сообщение26.01.2013, 17:28 
Аватара пользователя
Let $ABCD$ is a convex quadrilateral. $k_1$ and $k_2$ are the circumcircles of the triangles $ACB$ and $ACD$. $k_1$ intersects segments $AD$ and $CD$ at the points $K$ and $L$. $k_2$ intersects segments $AB$ and $DB$ at the points $M$ and $N$. $P$ is the intersection point of $KL$ and $MN$. $X$ is the intersection point of $BP$ and $k_1$. $Y$ is the intersection point of $DP$ and $k_2$. $Z$ and $T$ are the intersection points of $KL$ and $MN$ with $BD$, respectively. Prove that $X$, $Y$, $Z$, $T$ are concyclic.

 
 
 
 Re: Beautiful concyclic
Сообщение31.01.2013, 14:40 
Аватара пользователя
I would like to see a beatiful solution of this problem. Do you have any ideas?

 
 
 
 Re: Beautiful concyclic
Сообщение07.02.2013, 16:41 
Аватара пользователя
P, C, X, Z are concyclic. P, C, Y, T are concyclic, too. Does it help to solve the problem?

 
 
 
 Re: Beautiful concyclic
Сообщение08.02.2013, 17:26 
Аватара пользователя
It is a wrong statement ... it seems to be so close to reality. (At least using software and rounding to the second digit after decimal point shows it is true ... but when we use higher precision it shows it is false statement).

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group