2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Circumscribed quadrilateral
Сообщение19.01.2013, 19:28 
Аватара пользователя
Let the quadrilateral $ABCD$ is circumscribed around a circle with center $I$. $E$ is the intersection point of $AB$ and $CD$. $F$ is the intersection point of $AD$ and $BC$. $J$ is the intersection point of the diagonals $AC$ and $BD$. Prove that $EJ^2+FI^2=EI^2+FJ^2$.

(This problem is inspired by Milen Naydenov's problem published in the Bulgarian math magazine "Mathematical forum")

 
 
 
 Re: Circumscribed quadrilateral
Сообщение19.01.2013, 21:00 
Аватара пользователя
It is too easy - don't loose your time.

 
 
 
 Re: Circumscribed quadrilateral
Сообщение23.01.2013, 10:20 
Аватара пользователя
Interesting... I suppose, that $J$ was orthocenter $\triangle{EFI}$, but it's not (it is in inscribed quadrilateral).
Solution: let's $K,L,M,N$ - common tangency point of circle and sides $ABCD$ (look pic.) Then, obviously, lines $KL$, $MN$ pass through point $J$ and $EI^2 - FI^2 = EN^2 - FL^2$. Вy Stewart's Theorem for $\triangle{ENM}$ and $\triangle{FLK}$ we have $EJ^2 =  -NJ{\cdot}JM + EN^2$ and $FJ^2 =  -LJ{\cdot}JK + FL^2$, so $EJ^2+FI^2=EI^2+FJ^2$
Изображение

 
 
 
 Re: Circumscribed quadrilateral
Сообщение23.01.2013, 11:46 
Аватара пользователя
I think $IJ$ is perpendicular to $EF$. But I rediscovered the problem statement starting from totally different initial position.

 
 
 
 Re: Circumscribed quadrilateral
Сообщение23.01.2013, 18:23 
Аватара пользователя
Yes, $FE$ - polar of $J$ and previous mine solution is noob's one :evil:

 
 
 [ Сообщений: 5 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group