2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Complete quadrilateral and concyclic points
Сообщение06.01.2013, 17:14 
Аватара пользователя
Let $ABCD$ is an inscribed quadrilateral. $E$ is the intersection point of $AB$ and $CD$. $F$ is the intersection point of $AD$ and $BC$. $P$ is the intersection point of the diagonals $AC$ and $BD$. $M$ is the intersection point of the circumcircles of the triangles $APB$ and $CPD$. $N$ is the intersection point of the circumcircles of the triangles $APD$ and $BPC$. Prove that $E$, $F$, $M$, $N$ are concyclic.

 
 
 [ 1 сообщение ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group