2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.



Начать новую тему Ответить на тему
 
 Определитель матрицы над кольцом или полем.
Сообщение03.01.2013, 16:38 


19/11/12
8
Здравствуйте, подскажите пожалуйста, чем отличаются данные матрицы от обычных? При вычислении определителя, если получится число, не входящее в кольцо, нужно брать остаток от деления на него максимального элемента кольца? И чем будут отличаться манипуляции с вычислением определителя матрицы над полем?

 Профиль  
                  
 
 Re: Определитель матрицы над кольцом или полем.
Сообщение03.01.2013, 17:00 
Заслуженный участник


12/09/10
1547
Для нахождения определителя используйте операции умножения и сложения, определенные в данном поле. Тогда вы не выйдете за пределы поля.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 2 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group