2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Доказательство неравенств
Сообщение09.12.2012, 01:07 
Как доказывать(опровергать) такие неравенства:
$2^{\sqrt3} > 3^{\sqrt2}$.
Методы, приемы ...

 
 
 
 Re: Доказательство неравенств
Сообщение09.12.2012, 01:12 
Аватара пользователя
Хотя бы это докажите (опровергните)

 
 
 
 Re: Доказательство неравенств
Сообщение09.12.2012, 01:15 
TOTAL в сообщении #656035 писал(а):
Хотя бы это докажите (опровергните)


Я и спрашиваю как. Дайте хотя-бы намек, что-ли.

 
 
 
 Re: Доказательство неравенств
Сообщение09.12.2012, 01:16 
Аватара пользователя
Как любые другие: перевести в форму, в которой разница будет очевидна. Здесь, например, можете для начала возвести всё в степень $\sqrt2$.

 
 
 
 Re: Доказательство неравенств
Сообщение09.12.2012, 02:20 
Аватара пользователя
а я бы например сделал так, чтобы справа было $2^{\mbox{(что-то)}}$

 
 
 
 Re: Доказательство неравенств
Сообщение09.12.2012, 07:15 
matho в сообщении #656034 писал(а):
Методы, приемы ...
Возведите обе части неравенства в такую степень, что из показателя ушла иррациональность.

 
 
 
 Re: Доказательство неравенств
Сообщение09.12.2012, 12:24 
Аватара пользователя
Praded в сообщении #656071 писал(а):
Возведите обе части неравенства в такую степень, что из показателя ушла иррациональность.
Сразу обе уйдут?

 
 
 
 Re: Доказательство неравенств
Сообщение09.12.2012, 12:34 
Прологарифмируйте и рассмотрите функцию: $$\frac{\ln(x)}{\sqrt{x}}$$

 
 
 
 Re: Доказательство неравенств
Сообщение09.12.2012, 12:50 
TOTAL в сообщении #656133 писал(а):
Praded в сообщении #656071 писал(а):
Возведите обе части неравенства в такую степень, что из показателя ушла иррациональность.
Сразу обе уйдут?
Возведите в $\sqrt6$.

 
 
 
 Re: Доказательство неравенств
Сообщение09.12.2012, 13:15 
Аватара пользователя
Praded в сообщении #656140 писал(а):
Возведите в $\sqrt6$.

$2^{3\sqrt2} > 3^{2\sqrt3}$

Теперь что? (Вообще никто никуда не ушел.)

 
 
 
 Re: Доказательство неравенств
Сообщение09.12.2012, 13:34 
$8^{\sqrt2}\bigvee9^{\sqrt3}$

 
 
 
 Re: Доказательство неравенств
Сообщение09.12.2012, 13:38 
Аватара пользователя
Praded в сообщении #656155 писал(а):
$8^{\sqrt2}\bigvee9^{\sqrt3}$
Это неинтересно. Ждем обещанного исчезновения иррациональностей в показателях.

 
 
 
 Re: Доказательство неравенств
Сообщение09.12.2012, 13:44 
Этого достаточно.

 
 
 [ Сообщений: 13 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group