2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 4 concyclic incenters
Сообщение07.12.2012, 16:16 
Аватара пользователя


13/10/07
755
Роман/София, България
There are given two circles - $m$ and $n$. $n$ is internally tangent to $m$ at the point $T$. $p$ and $q$ are two tangents to $n$ with tangency points $C_1$ and $C_2$ respectively. $A_1$ and $B_1$ are the intersection points of $p$ with the circle $m$. $A_2$ and $B_2$ are the intersection points of $q$ with $m$. Prove that incenters of the triangles $TA_1C_1$, $TB_1C_1$, $TA_2C_2$, $TB_2C_2$ are concyclic.

 Профиль  
                  
 
 Re: 4 concyclic incenters
Сообщение07.02.2013, 21:46 
Аватара пользователя


02/03/08
178
Netherlands
After 2 weeks papers research, it seems to be wrong statement... It's obvious bring out in any proper pic...

 Профиль  
                  
 
 Re: 4 concyclic incenters
Сообщение07.02.2013, 22:15 
Аватара пользователя


13/10/07
755
Роман/София, България
Oh ... I'm sorry. I knew that but I forgot to tell it.

-- Пт фев 08, 2013 00:09:01 --

Indeed ... this mistake shows I (re)discovered most of the problems I post.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Shadow


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group