Здравствуйте, дорогие математики!
Уже давно прорешиваю задачки из Треногина, Писаревского. Когда находишь решение к какому-либо заданию, почти всегда есть определенная уверенность, что решение верно. (К тому же этому способствует простое просматривание варианта решения предлагаемое автором в конце задачника). Но есть такие задачки, вроде бы решил, а что-то все равно смущает. Задача в самом начале курса, ушел по задачнику уже до второго параграфа, а эту никак не пойму что не так.
Может кто-нибудь объяснит как более формально решить следующую задачу:

-- нормированное пространство. Доказать, что

, и

.