2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4
 
 Re: правильно ли решены задачи на тему "ряды"?
Сообщение22.11.2012, 09:49 
Аватара пользователя
Тогда к чему в этом признаке слова "иначе сходится"?

 
 
 
 Re: правильно ли решены задачи на тему "ряды"?
Сообщение22.11.2012, 09:50 
Аватара пользователя
ИСН, никчему. Это ненужное и неправильное уточнение.

 
 
 
 Re: правильно ли решены задачи на тему "ряды"?
Сообщение22.11.2012, 09:57 
Аватара пользователя
Ага, с признаком разобрались. Теперь применить его. Если общий член ряда равен $(-1)^n\over3$ - он стремится к нулю или нет? Как понять?

 
 
 
 Re: правильно ли решены задачи на тему "ряды"?
Сообщение22.11.2012, 10:03 
Аватара пользователя
Я плохо представляю,как это точно понять. Можно, например, попробовать записать несколько членов ряда и уловить закономерность. Но это не приводит ни к чему внятному. Мы вот выяснили, что предела у данной последовательности нет. Так значит общий член этого ряда ни к чему не стремится. Он то $1/3$, то $-1/3$ и так до бесконечности...Или я неправильно понимаю и неуместно смешиваю два понятия: 1) к чему стремится общий член ряда и 2) предел последовательности?

 
 
 
 Re: правильно ли решены задачи на тему "ряды"?
Сообщение22.11.2012, 10:15 
Аватара пользователя
Правильно понимаете! Это одно и то же понятие! Значит, что?

 
 
 
 Re: правильно ли решены задачи на тему "ряды"?
Сообщение22.11.2012, 10:21 
Аватара пользователя
Наверно значит по причине невыполнения необходимого признака сходимости ряд $\sum \limits_{n=0}^{\infty} \frac {(-1)^n}{3}$ расходится...

 
 
 
 Re: правильно ли решены задачи на тему "ряды"?
Сообщение22.11.2012, 10:31 
Аватара пользователя
Ну вот! :appl:

 
 
 
 Re: правильно ли решены задачи на тему "ряды"?
Сообщение22.11.2012, 10:38 
Аватара пользователя
Фууух)
И так же значит для ряда $\sum \limits_{n=0}^{\infty} \frac {1^n}{3}$? Ведь предел $1^n$ при $n \to \infty$ равен $1$?

 
 
 
 Re: правильно ли решены задачи на тему "ряды"?
Сообщение22.11.2012, 11:09 
Аватара пользователя
Ну да. Так для этого Вы с самого начала правильно сказали.

 
 
 
 Re: правильно ли решены задачи на тему "ряды"?
Сообщение22.11.2012, 11:20 
Аватара пользователя
ИСН, хорошо. Спасибо большое! Я скоро тут решение еще одной задачки выложу. Для 100% уверенности.

 
 
 
 Re: правильно ли решены задачи на тему "ряды"?
Сообщение22.11.2012, 13:17 
Аватара пользователя
Я, наверно, лучше новую тему создам.

 
 
 [ Сообщений: 56 ]  На страницу Пред.  1, 2, 3, 4


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group