2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Strange Problem
Сообщение14.10.2012, 03:23 
Аватара пользователя
Let the acute-angled triangle $ABC$ is inscribed in a circle $k$. Internally for $ABC$ is chosen a point $P$. Line $AP$ intersects $k$ at the point $A_1$. Line $BP$ intersects $k$ at the point $B_1$. Through $P$ is drawn a line $l$ intersecting $BC$ and $AC$ at the points $A_2$ and $B_2$. Prove that circumcircles of the triangles $A_1A_2C$, $B_1B_2C$ and the line $l$ intersects at a common point.

 
 
 [ 1 сообщение ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group