2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Heights and a circle
Сообщение13.10.2012, 23:59 
Аватара пользователя
In the acute-angled triangle $ABC$ $AA'$, $BB'$, $CC'$ are the heights through the vertices $A$, $B$, $C$. $k$ is a circle through $A$ and $B$ intersecting $BC$ and $AC$ at the points $A_1$ and $B_1$ respectively and $AA'$ and $BB'$ at the points $A_2$ and $B_2$. Prove that $A_1A_2=B_1B_2$ and $A_1A_2$, $B_1B_2$, $CC'$ intersects at a common point.

(Оффтоп)

It is very easy problem. Even I managed to solve it

 
 
 [ 1 сообщение ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group