2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Circumcenter and orthocenter
Сообщение06.10.2012, 22:39 
Аватара пользователя
Let acute-angled triangle $ABC$ is inscribed in a circle $k(O)$. Heights through $A, B, C$ intersects $k$ at the points $H_A, H_B, H_C$ respectively. $A_1$ is the intersection point of $OH_A$ and $BC$, $B_1$ is the intersection point of $OH_B$ and $CA$, $C_1$ is the intersection point of $OH_C$ and $AB$. Prove that $AA_1$, $BB_1$, $CC_1$ intersects at a common point.

 
 
 [ 1 сообщение ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group