2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 5 concyclic points
Сообщение20.09.2012, 05:23 
Аватара пользователя
Let $A$ and $B$ are the tangency points of the line $l$ with the circles $k_1$ and $k_2$. A line $m$ intersects $k_1$ and $k_2$ at the points $C, D, E, F$ in this order. Let $M$ is the middle of $AB$. Intersection points of $CM$ and $DM$ with $k_1$ are $K$ and $L$ respectively. Intersection points of $EM$ and $FM$ with $k_2$ are $N$ and $P$ respectively. Prove that $K, L, M, N, P$ are concyclic.

(don't loose your time - the problem is too easy)

 
 
 [ 1 сообщение ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group