1. Пусть 

- метризуемое ТВП и 

- инвариантная метрика. Тогда пусть 

, имеем 

. Положим, что 

 сходится к нулю. Тогда для всякого 

 существует 

, такое что для всех 

 имеем 

, значит 

. Определим последовательность 

, положив при этом что не существует такого 

 начиная с которого последовательность была бы нулевой(это гарантирует, что 

- бесконечно большая). Теперь кладем, что 

 и то что все 

- определены. Определим для 
 
. Тем самым показано, что последовательность 

 сходится к нулю, а 

- бесконечно большая. Это то, что Вы хотели?