Bod писал(а):
bot, то есть вы хотите сказать что ...
Я хотел только сказать, что прежде чем говорить о различиях, существенных или не существенных, надо вложить в этот термин точный математический смысл.
Какие различия может ловить отношение раномощности множеств без наличия дополнительных структур на множестве? Вот только эту равно- и разномощность и может ловить, смысл его введения был именно в этом. Избегая "слишком больших" множеств рассмотрим множество подножеств некоторого универсума. Отношение равномощности (которое задаётся существованием 1-1-значного отображения одного на другое) разобъёт это множество подмножеств на классы эквивалентности. Представители одного класса окажутся равномощными, а разных - нет. Если в качестве универсума взять множество точек плоскости, то в одном классе окажутся точки любой прямой и точки всей плоскости. Как Вы собираетесь только лишь в терминах существования биекции различить прямую и плоскость, если биекции их не различают? Ясно, что без наложения дополнительных структур топологического, алгебраического или иного толка (в конце концов, хотя бы и аксиоматически) этого не достичь.
То есть всё зависит от языка, на котором Вы хотите это различие получить. Можно без труда привести пример языка, на котором даже и мощность определить будет нельзя - этот язык не сможет отличить 2-элементное множество от 3-, 4-элементного, ... счётного, континуального ...