spaits, конечно Вы получите своё замечание за изложение решения простейшей задачи, которое автору темы, должно быть, не пригодно, поскольку задача явно школьная, а в школе не изучают метод котнурных токов ,котрый в вашем решении завуалирован: токи

и

которые Вы нашли являются контурными, а ток через сопротивление

выражается их разностью (суммой). Возможно где-то Вы не учли знаки при ЭДС и токах, о чём сказать не берусь, ибо Вы не задали условно-положительные направления токов и обхода контуров.
Что касается бурной полемики, возникшей здесь - то она ни к чему. В начальном сообщении темы автор продемострировал проблемы с составлением СЛАУ цепи, в связи с чем педагогически целесообразным является помочь автору освоить проблемный материал, а потом уже говорить о возможных "неформальных" путях решения задачи.
Добавлено:
Да, и я совсем забыл, что в уравнениях для контурных токов фигурируют полные и взаимные сопротивления контуров.