2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Many circles
Сообщение05.08.2012, 17:02 
Аватара пользователя
Acute-angled triange $ABC$ is inscribed in a circle $k$. $D$ is the feet of the altitude from the vertex $C$ to $AB$. With diameters $AD$ and $BD$ respectively are constructed circles $k_1$ and $k_2$. $E$ is the intersection point of $k$ and $k_1$ and $F$ is the intersection point of $k$ and $k_2$. Externally from the triangle $ABC$ are drawn tangents $CA_1$ and $CB_1$ from $C$ to $k_1$ and $k_2$ respectively. $CE$ intersects $k_1$ at the point $A_2$. $CF$ intersects $k_2$ at the point $B_2$. Prove that:
a) $AA_1BB_1$ is concyclic.
b) $A_1A_2B_1B_2$ is concyclic.
c) $A_1B_1EF$ is concyclic.
d) $A_2B_2EF$ is concyclic.

 
 
 [ 1 сообщение ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group